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Abstract – Nuclear criticality safety analysis using computational methods such as Monte

Carlo must establish, for a defined area of applicability, an upper subcritical limit (USL), a

calculated multiplication factor k that can be treated as actually subcritical, derived from

a calculational margin (combination of bias and bias uncertainty) and a margin of subcriti-

cality. Whisper, a non-parametric, extreme-value method based on sensitivity/uncertainty-

based techniques and the associated software are presented. Whisper uses benchmark critical

experiments, nuclear data sensitivities from the continuous-energy Monte Carlo transport

software MCNP, and nuclear covariance data to set a baseline USL. Comparisons with a tra-

ditional parametric approach for validation, which requires benchmark data to be normally

distributed, show that Whisper typically obtains similar or more conservative calculational

margins; comparisons with a rank-order, non-parametric approach show that Whisper ob-

tains less stringent calculational margins.
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I INTRODUCTION

American National Standards Institute/American Nuclear Society (ANSI/ANS) national

standards 8.1 [1] and 8.24 [2] require that nuclear criticality safety analysts determine through

validation what value of the multiplication factor k predicted by software can be treated as

subcritical, i.e., an upper subcritical limit (USL). Performing a validation study for an ap-

plication requires that the analyst determine the predictive capability of a method, software,

and nuclear data for computing k. The discrepancy or deviation of a calculated k from

its expected value, i.e., from a benchmark critical experiment, is called the bias. Since the

computational methods and the benchmark experiments have associated uncertainties, these

must also be factored into determining the USL. The other factor that is included in the

USL is an additional margin of subcriticality (MOS) that considers other uncertainties and

considerations about the application, its sensitivity of k to changes in process conditions and

the suitability of the validation, and the method, software, data, etc.

The process of performing a validation study is traditionally labor intensive and therefore

typically done only when necessary, e.g., when an analyst encounters a new application

outside the area of applicability (AOA) of the existing validation or when updating software

and nuclear data. Because of the level of effort and cost to perform a validation study, many

organizations perform them much less frequently than the rate that new versions of software

and nuclear data are released. Since a validation study is required to use a particular version

of transport software and nuclear data libraries for criticality safety work, many organizations

end up using long outdated and unsupported versions.

For example, the Nuclear Criticality Safety division at Los Alamos National Laboratory

(LANL) used the same version of MCNP [3] for over a decade (MCNP5-1.25) with nuclear

data libraries that were decades old, until, in 2014, a validation study was performed that

allowed the division to update to MCNP6.1 and ENDF/B-VII.1 nuclear data1 [4, 5], the

1Throughout this paper, the phrase “ENDF/B-VII.1 nuclear data” is shorthand for data from the
ENDF/B-VII.1 nuclear data library that has been processed by NJOY99.393 into a format that is read-
able by and distributed with MCNP6.1.
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current versions at the time. In the time period between the two updates, several bug

fixes and enhancements were made that impact criticality calculations, e.g., fission source

convergence diagnostics. The work outlined in this paper, i.e., the associated methods and

software, was done to not only perform the validation study allowing the current update of

software and nuclear data versions, but to facilitate future validation studies so that LANL

criticality safety analysts may readily use new versions as they are released.

Sensitivity/uncertainty (S/U) techniques have been used to guide the selection of bench-

marks for criticality safety validation for well over a decade with multigroup deterministic or

Monte Carlo methods [6, 7]. Recently, continuous-energy Monte Carlo sensitivity methods

[8, 9, 10, 11] have been developed and integrated into production software such as MCNP

and SCALE [12, 13], with the advantage being that assessing the effect of multigroup cross

section generation on the sensitivity coefficient, i.e., determining the implicit sensitivity co-

efficient, ceases to be a concern.

This allows for the possibility of an automated process that selects relevant benchmarks

for a specific application being analyzed computationally, and therefore the calculational

margin (bias and bias uncertainty) may be determined. Determining an appropriate MOS

is ultimately the responsibility of the analyst, but it is also possible to automate the quan-

tification of the effect of variability and uncertainties because of the nuclear data libraries

considering the set of available benchmarks for the validation. The goal is to make validation

a routine part of criticality safety evaluations where computational analysis via Monte Carlo

is required (a similar method could also be developed for deterministic codes as well, but

that is beyond the scope of this paper). Doing this mitigates the issue of using outdated

versions of transport software and nuclear data libraries; in principle, a new version can be

swapped into the normal workflow of performing a criticality safety evaluation.

The software that was developed for this purpose is named Whisper, and its computa-

tional and statistical methods, described in this paper, are termed the Whisper methodology.

The software package consists of a main computational analysis package written in Fortran
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2003/2008 and a few utility scripts to help with automating the running of MCNP for the

creation of nuclear data sensitivity profiles.

As stated earlier, Whisper and the associated methods have already been used at LANL

for a validation study involving plutonium systems, and there is associated user documenta-

tion for the software [14] distributed with Whisper and a publicly available technical report

demonstrating its use for real-world applications [15]. The primary focus of this paper is

to document and explain the Whisper methodology in greater detail than is appropriate in

either user documentation or a nuclear criticality safety validation report and to offer illus-

trative analyses of a variety of hypothetical applications with comparisons to other validation

methods to show that Whisper produces reasonable USLs.

This paper is structured as follows: First, the basic concepts of validation in critical-

ity safety and two standard approaches for computing the calculational margin (CM) are

reviewed in Sec. II. Next, the Whisper methodology is detailed in Sec. III; this discus-

sion includes how the relevant quantities to compute a USL are calculated, how benchmark

weight factors may be defined, how unknown benchmark uncertainties may be estimated,

how benchmarks of low quality are identified and removed from the validation, and the

workflow of the Whisper software and how it may fit in with criticality safety analysis. After

that, aspects of what constitutes an acceptable benchmark suite for Whisper are discussed,

and details of the benchmark suite distributed with Whisper and used for the results in this

paper and in Ref. [15] are summarized in Sec. IV. Finally, example results are given in

Sec. V for four hypothetical test cases: a determination of water-reflected plutonium critical

mass at various moderation levels, the storage of fresh, low-enriched uranium (LEU) lattices

in water, the storage of containers of mixed LEU/power-grade Pu solutions, and an analysis

of molten salt reactor (MSR) fuel.
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II VALIDATION IN CRITICALITY SAFETY

When performing criticality safety with computational methods, typically the k-eigenvalue

form of the neutron transport equation is solved. This equation can be written with operator

notation as follows:

Ω̂ · ∇ψ + Σtψ = Kψ +
1

k
Fψ. (1)

Here ψ is the neutron angular flux representing the number of neutrons per area, per energy,

per solid angle, per time in a differential phase space element in volume, energy, and direction.

Ω̂ is the direction unit vector, Σt is the total interaction cross section, K is the integral

scattering operator, and F is the integral fission operator. The terms have been grouped

such that losses with respect to a differential element of phase space are on the left, and

gains are on the right.

Typically, the gains and the losses do not balance. A factor of 1/k is placed upon

the fission term and the value of k is found that causes the losses and gains to balance.

The quantity k is purely a mathematical factor to balance an equation and should not be

construed as a physical parameter or having any a priori connections with the actual physical

processes in the system being analyzed. While it is possible to map the behavior of k as a

function of varying physical parameters for a specific system, such results have no generality.

In terms of nuclear criticality safety, k has nothing to do with upset conditions or their

likelihood, and absent such a detailed study of process conditions, there is no value of k that

can be universally assigned that is “safe” with regard to the prevention of criticality.

The methods described in this paper provide a baseline USL considering only the critical

experiment benchmarks, transport software, and nuclear data, which are only a part of the

overall analysis that goes into a criticality safety evaluation. It does not and cannot replace

the role of the analyst toward setting appropriate limits, controls, etc. that consider the

process in its entirety, balancing economics, human factors, material controls, safety culture,

etc. and not just the computational aspects of analysis. These issues are important for the
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nuclear criticality safety analyst, but are beyond the scope of this paper.

Computational methods are not the only means of performing criticality safety analysis to

demonstrate subcriticality. Rather, they supplement other approaches such as experiments,

standards, single-parameter subcritical limits, handbooks, and hand calculations. Computa-

tional tools are used when the results of these simpler methods require control limits that are

unacceptable; these unacceptable control limits are because of the conservatisms built into

or used when applying the simpler methods. Conversely, computational methods lose their

usefulness when the USL becomes too low because of the lack of available benchmark data.

In this case, the computational methods need to be supplemented by the other techniques.

With those caveats stated, in terms of the role of computation in criticality safety, the an-

alyst is tasked with ensuring that the application or process being analyzed stays subcritical

for all representative computational models used to describe process conditions. Mathemati-

cally, this means that the gains are less than the losses in the transport equation, i.e., k < 1,

for the computational models being analyzed.

When using computational methods, the analyst must ensure that the value of k, a

mathematical quantity, being predicted by a computational method actually corresponds to

a subcritical configuration in reality. The discrepancy between computational results and

reality is referred to as a bias, and it is up to the criticality safety analyst to quantify it.

Sources of bias range from errors and approximations in the method or software, inadequacy

of the computational model, and inaccuracies of the nuclear data used in the simulation,

which is typically the dominant source. To ascertain the bias, the criticality safety ana-

lysts should assess the performance of the method’s ability to predict k of relevant (i.e.,

having similar neutronic properties as the application being analyzed) critical experiment

benchmarks. Since all experimental measurements carry uncertainty, as does the process of

representing a physical system with a computational model, the bias also has an associated

uncertainty that must be quantified as well. Taken together, the bias and bias uncertainty

define a quantity called the calculational margin. Furthermore, taking credit for bias where
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the software systematically predicts a k higher than a reference value for the AOA, referred

to in this paper as a non-conservative bias, is prohibited by ANSI/ANS-8.24 unless there is

“an understanding of the cause(s) of such bias.”

The ANSI/ANS-8.24 national standard requires an additional margin in addition to the

calculational margin to ensure that the simulated system is actually subcritical; this is called

the margin of subcriticality (MOS). This paper outlines techniques for offering a baseline

of this additional margin. Unlike the calculational margin, which is a more mathematically

defined quantity, the MOS incorporates aspects that are related to not only the software

and nuclear data but aspects of the process being analyzed. This paper only addresses the

former, software and nuclear data, and leaves aspects of the process up to the analyst.

Once these two margins are known, the USL is defined as

USL = 1− CM−MOS. (2)

The computed k for an application model, kA, plus its uncertainty, σA, at some chosen

confidence level must be less than the the USL to assert that the application model is sub-

critical. Typically only statistical uncertainty from the Monte Carlo process is included in

σA, but other uncertainties (e.g., impact of manufacturing tolerances, effects of tempera-

ture fluctuations, etc.) may be included as needed. The confidence level is chosen by the

analyst (or, more typically, by the analyst’s institution or regulator) and this determines

a multiplicative factor nσ applied to the computed model uncertainty σA. The factor nσ

is the number of standard deviations to achieve some confidence level, e.g., nσ = 2.6 for

the 99% confidence level of a normally distributed quantity—the mean kA from the Monte

Carlo calculation should be normally distributed if the simulated fission source distribution

reached convergence prior to recording estimates of kA, the neutronically relevant regions

of the problem were adequately sampled, and enough samples (i.e., active cycles in MCNP

parlance) of kA were performed.

8



Define the amount that the application exceeds the USL for an application A as

δA = (kA + nσσA)− USLA. (3)

If δA < 0, then the analyst can be confident that the model for the application A is actually

subcritical; if δA ≥ 0, then the analyst cannot. Conversely, δA = 0 does not imply that the

application is critical to any degree of confidence, and neither does δA > 0 mean that the

application is necessarily supercritical. In either case (δA = 0 or δA > 0), the criticality of

the application model is ambiguous.

II.A Standard Approaches for Determining the Calculational Margin

A standard approach, which is outlined in Ref. [16], is briefly reviewed here for comparison

to the Whisper methodology. First, the literature is reviewed and benchmarks that are

similar (either qualitatively or quantitatively based on physical, neutronic properties) to the

application case being analyzed are selected. Let N be the number of benchmarks in a set,

and once this set is known, the bias and bias uncertainty may be determined.

Two standard methods are presented here. The first is referred to as the parametric

method, which requires that the benchmark data be normally distributed. The second is

the non-parametric or rank-order approach, which has no restriction on how the benchmark

data are distributed.

Normality of the benchmark data is assessed using statistical tests. A popular approach

in criticality safety and other fields that use statistical analysis is the Shapiro-Wilk normal-

ity test. Alternatively, the χ2 test may be used when the sample size is large (Ref. [16]

recommends greater than 50 benchmarks).
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II.A.1 Parametric method

The parametric method may be used if the k of the benchmarks in the set are normally

distributed.

Define k̃i as the scaled multiplication factor of the ith benchmark that is the calculated

k divided by the benchmark k. The latter is often, but not always, unity. This assumes the

bias in the calculation is unaffected by the scaling, which is valid for small differences in k.

Let σi be the uncertainty for the benchmark, which is the square root of the sum-in-

quadrature of the benchmark and calculational (Monte Carlo statistical) uncertainties. The

weight factor for each benchmark is the inverse of the variance,

wi =
1

σ2
i

, (4)

and W is the sum of all wi.

The mean multiplication factor k̄ is determined from a simple weighted average:

k̄ =
1

W

N∑
i=1

wik̃i. (5)

The bias β is then

β = k̄ − 1. (6)

When the bias is negative, the calculation tends to predict values of k that are lower than

reference values. Likewise, a positive bias means that the calculation tends to predict values

of k that are higher than the reference values.

Recall that taking credit for non-conservative bias is usually not permitted. For this

reason, a non-conservative bias adjustment parameter,

∆m = max {0, β} , (7)
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will normally be added to the calculational margin.

Next, the bias uncertainty must be estimated. This is typically done with a quantity

called the pooled variance, σ2
β, which is the quadrature sum of the weighted variance in k

about the mean, s2k and the average variance of k, σ̄2
k:

σβ =
√
s2k + σ̄2

k. (8)

The weighted variance in k about the mean is the weighted standard deviation,

s2k =
1

W

N

N − 1

N∑
i=1

wi

(
k̃i − k̄

)2
, (9)

and the average variance of k is

σ̄2
k = N

(
N∑
i=1

1

σ2
i

)−1
=
N

W
. (10)

The bias uncertainty σβ must then be multiplied by the single-sided tolerance factor κ to

obtain the interval that guarantees a certain percentage p of the benchmarks will be bounded

to some confidence level q. The factor κ may be determined by

κ =
t
[
q,N − 1, z(p)

√
N
]

√
N

, (11)

where t is the inverse of the cumulative distribution function (CDF) of the noncentral t-

distribution with probability q, degrees of freedom N − 1, and noncentrality parameter

z(p)
√
N ; z is the inverse of the standard normal CDF with probability p. For the results

presented in this paper with this method, q and p are 0.99.

Because the single-sided tolerance factor from Eq. (11) requires the inverse of the non-

central t-distribution, which is not available in many statistical analysis or spreadsheet soft-
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ware packages, often an asymptotic form [17] is used,

κ̃ =
z(p) +

√
z2(p)− ab
a

, (12)

where

a = 1− z2(q)

2 (N − 1)
(13)

and

b = z2(p)− z2(q)

N
. (14)

The asymptotic single-sided tolerance factor κ̃ from Eq. (12) is a good approximation of κ

from Eq. (11) when N is large (i.e., N > 20), but deviates significantly for small sample

sizes. The results presented in this paper use the rigorous κ from Eq. (11).

The calculational margin is defined as the sum of the bias, bias uncertainty times the

single-sided tolerance factor, and a non-conservative bias adjustment parameter:

CM = −β + κσβ + ∆m. (15)

If the benchmarks are normally distributed, then the parametric method described can

not only be used, but trending of the calculational margin on physical parameters (e.g.,

uranium enrichment, spectral indices, etc.) may be done as well. Since trending with this

method is not performed in this paper, the discussion of how to perform the analysis is not

included in this paper, but a description may be found in Ref. [16].

II.A.2 Non-parametric, rank-order method

If the benchmark k are found to not be normally distributed, then the calculational margin

must be determined non-parametrically. One standard method in criticality safety is dis-

cussed in Ref. [16], which is a rank-order approach that determines a confidence level that

a fraction of the population of benchmarks is above the smallest, i.e., worst case, k̃.
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The bias for the non-parametric, rank-order method is

β = min
{
k̃i

}
− 1. (16)

The bias uncertainty is the total uncertainty, i.e., benchmark and statistical uncertainties

summed in quadrature, at some confidence level, i.e., multiplied by some factor nσ, of the

benchmark corresponding to the minimum k̃.

The baseline calculational margin is the combination of the bias and bias uncertainty

of the benchmark with the minimum k̃ and an additional non-parametric margin mNP . As

before, no credit is normally taken for non-conservative bias by applying the non-conservative

bias adjustment parameter ∆m.

To determine mNP , first the non-parametric confidence level CNP is obtained by

CNP = 1− pN , (17)

where p is the desired population fraction, typically 0.95 for this method. Based on the value

of CNP , Ref. [16] recommends values for the non-parametric margin mNP ranging from 0 to

0.05 for p = 0.95. These values are reproduced in Table I.

The final calculational margin for the non-parametric approach is the same as in Eq.

(15) except that it is further increased by the non-parametric margin mNP .

As will be seen, the Whisper methodology, being based on the worst-case discrepancy

in k, is similar to the non-parametric, rank-order method. The standard non-parametric

method is simply a rank-order approach that does not take into account the discrepancy in

the benchmark k and their uncertainties other than that of the worst case. It is also not clear

how weighting of the benchmarks to account for the degree of relevance to the application

being analyzed can be performed. The Whisper methodology considers these.

One aspect that was glossed over in this discussion of either the standard parametric or

non-parametric methods is the selection of relevant benchmarks. This often represents the

13



largest up-front cost in terms of time for the criticality safety analyst and often, in practice,

makes validation an unpalatable exercise for an institution to undertake. The Whisper

methodology may also help circumvent this barrier.

II.A.3 Discussion of other approaches and tools

The approaches discussed in Secs. II.A.1 and II.A.2 are certainly not the only available

methods for determining a baseline USL. These methods are detailed because the results

of those two methods are compared with those from Whisper. Before proceeding with

describing Whisper, it is instructive to provide a list, which is certainly not exhaustive, of

other approaches and tools for criticality safety validation.

An overview of some methods and comparisons of the results from those may be found in

Ref. [18], which includes the two methods [therein called the Washington Safety Management

Solutions (WSMS) method] discussed in this paper. Also included in this discussion are

the two methods available in the USLSTATS software [19] maintained by ORNL and the

four methods [20] included included in the USLSA software [21] from General Electric (GE).

Trending analysis is also possible with various methods and software tools such as PARANAL

[22] from GE and MACSENS [23] from Institut de Radioprotection et de Surete Nucleaire

(IRSN).

Whisper uses the generalized linear least squares method discussed in Ref. [6] to adjust

nuclear data for determining a MOS for nuclear data variability (see Sec. III.B.2). These

techniques may also be used to estimate the bias and bias uncertainty for the calculational

margin as well. It is perfectly valid to do as such, but Whisper does not employ them

for this purpose. Rather a different approach (described in Sec. III) is used based on

the extreme-value methods. This avoids potential concerns with how the bias computed

from a nuclear data adjustment is randomly distributed and whether a linear regression

model is appropriate. How the bias is randomly distributed matters when determining

the calculational margin, as the appropriate confidence level or single-sided tolerance factor
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to apply to the similarly computed bias uncertainty must be decided. Whisper is a non-

parametric approach for determining the calculational margin, and tries to avoid these issues.

III WHISPER METHODOLOGY

The Whisper methodology estimates the calculational margin and minimum MOS to deter-

mine a baseline USL. The term “baseline” implies that the USL should be viewed as an upper

bound for the actual USL applied in a criticality safety evaluation. The nuclear criticality

safety analyst retains the responsibility of ensuring subcriticality, as computational tools or

analytical techniques, while necessary in many criticality safety evaluations, cannot do that

by themselves. Ultimately, the baseline USL is a guide to help the analyst, and he or she

may feel compelled to apply additional margin where the baseline is thought, based upon

expert engineering judgment, to be insufficient.

The Whisper methodology for computing the calculational margin is non-parametric; it

does not require the biases of the benchmark population to follow a normal (or any other)

distribution. It also automatically selects and weights benchmarks from a large validation

suite that are most neutronically similar to a particular application. For the MOS, the Whis-

per methodology includes the uncertainties from nuclear covariance data after an adjustment

that considers the benchmarks available in the suite. The Whisper methodology may even

do trending on both of these quantities by considering a set of application models where the

trending parameter is varied; based on the results from multiple application models, fits of

the behavior may be made by the criticality safety analyst.

How the Whisper methodology determines the calculational margin and MOS, and there-

fore the baseline USL, is discussed next. This is followed by an explanation of how Whisper

estimates unknown benchmark uncertainties and uses a nuclear data adjustment to reject

poor quality benchmarks from the validation. Then, a brief discussion of the computational

workflow that a criticality safety analyst would perform to use the Whisper software is given.
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III.A Calculational Margin

The calculational margin includes the biases and bias uncertainties of relevant benchmarks,

each having a weight wi based on the degree of relevance with respect to the particular

application being analyzed. There are numerous possible statistical methods for computing

these quantities depending upon the definitions made. One conservative definition, which

is used by Whisper, is to find the value of a calculational margin that would bound the

worst-case (i.e., most negative) bias to some probability or confidence interval of a weighted

population. The attractiveness of this definition is that the addition of less relevant bench-

marks to the set being used in the validation cannot decrease the calculational margin, and

therefore a very broad set of benchmarks may be used for performing the validation without

concern that irrelevant benchmarks will somehow non-conservatively affect the result. Con-

versely, because of the weighting based on the degree of relevance, the addition of irrelevant

benchmarks will also not produce an overly conservative calculational margin.

This definition is now expressed mathematically. The mathematics is expressed in terms

of the opposite-signed bias, such that negative bias (i.e., k predicted lower than reference

values) leads to positive values. Using the opposite-signed bias simplifies the mathematical

descriptions of the method. To begin, suppose that the experimental benchmarks are inde-

pendent and that benchmark i has an opposite-signed bias Xi, a random variable distributed

with CDF Fi(x). Let random variable

X = max {X1, . . . , XN} . (18)

The CDF for X is the product of the individual CDFs, i.e.,

F (x) = P(X ≤ x) =
N∏
i=1

Fi(x). (19)

Here x is selected to satisfy F (x) equal to some probability or one-sided confidence interval.
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The corresponding probability density function (PDF) is

f(x) =
dF

dx
=

N∑
i=1

fi(x)
N∏
j=1
j 6=i

Fj(x) = F (x)
N∑
i=1

fi(x)

Fi(x)
. (20)

To illustrate Eq. (20) and the resulting distribution, consider the case of two PDFs

f1(x) and f2(x) that are normally distributed as N1(0, 1) and N2(
1
4
, 1
4
) respectively, and let

f(x) = max {x1, x2}.

Figure 1 gives curves for the density functions f1(x) and f2(x) with dashed lines and the

maximum distribution f(x) with a solid one. There are a few observations to make about

f(x) when the fi(x) are normally distributed. First, f(x) is not normally distributed, and

therefore many of the standard statistical techniques, which assume normality, do not apply

to f(x). The mean of f(x) also exceeds both the means of f1(x) and f2(x); this property is

true for an arbitrary number of normal distributions fi(x). Another property is that as N

increases, the mean of f(x) always increases; this is even true if all the fi(x) are identical

normal distributions, but then the mean of f(x) increases very slowly for large N . f(x) is

also not symmetric; it has a positive skewness, and this property makes using f(x) attractive

for criticality safety as it always leads to conservative results. A potential drawback is that

a single function fj(x) with a very large mean relative to the other fi(x) almost completely

determines f(x) [where f(x) is approximately fj(x)], which can lead to an overly conservative

and constraining result. For this reason, a method for the selection and weighting of the

fi(x) is needed.

Using normal distributions as an example is not merely an illustrative pedagogical choice;

for critical experiment benchmarks, the multiplication factor k for benchmark i is usually

normally distributed about its quoted mean benchmark value ki,bench and benchmark uncer-

tainty σi,bench. The computational method predicts a value ki,calc and, if it is a Monte Carlo
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method, a calculated uncertainty of the mean σi,calc. The mean bias βi is defined as

βi = ki,calc − ki,bench. (21)

The uncertainty in the bias of the ith benchmark is the square root of the sum in quadra-

ture of the benchmark and calculated uncertainties,

σi =
√
σ2
i,bench + σ2

i,calc. (22)

The CDF for the normal distribution for the opposite-signed bias −βi given weight wi is

Fi(x) = (1− wi) +
wi
2

[
1 + erf

(
x+ βi√

2σ2
i

)]
. (23)

Note the plus sign in the numerator of the error-function argument. The CDF of the normal

distribution is x minus the mean; but, recall this distribution describes the opposite-signed

bias, and hence the plus sign.

The weighting factor wi biases the CDF of the normal distribution, and except when

wi = 1, Fi(x) may no longer be interpreted as the probability that the opposite-signed bias

of benchmark i, a random variable, is less than a number x. Accordingly, the weights wi

used in the Fi(x) of Eq. (19), the extreme value CDF F (x), are scaled such that the largest

wi is always one; this ensures F (x) satisfies the mathematical requirements of being a CDF,

even if, strictly speaking, all but one of the individual Fi(x) do not.

Given the benchmark data and a set of weight factors, it is then possible to use Eq.

(19) to compute the calculational margin to some confidence level. This is discussed next,

followed by an explanation of a method for assigning weight factors and a discussion of a

possible approach to handle small sample sizes.
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III.A.1 Computation of bias, bias uncertainty, and calculational margin

The calculational margin is, again, the combination of the bias and bias uncertainty. Perhaps

ironically, the calculational margin with the extreme value distribution can be well defined,

whereas the definitions of bias and bias uncertainty are somewhat arbitrary. Where the

definition of bias becomes important is when following the convention of not taking credit

for non-conservative bias. Therefore, the unadjusted calculational margin (where no consid-

eration has been made for non-conservatively crediting bias) is defined first to be the value

of m such that the extreme value CDF

F (m) = q. (24)

Typical values of q are 0.95 or 0.99; for this paper, a value of 0.99 is used throughout. The

quantity m corresponds to the calculational margin that bounds the worst-case benchmark

bias and bias uncertainty to probability q.

The bias represents, for a given AOA, the systematic deviation of calculated results from

their respective reference values. In statistics, bias is typically defined as the expected value

or mean of the systematic deviation. The parametric approach in Sec. II.A.1 uses the sample

mean as the bias, whereas the non-parametric, rank-order approach in Sec. II.A.2 defines

the bias more conservatively by using the largest deviation under-predicting the reference k.

Whisper, based on extreme values, combines the two definitions. The opposite-signed bias

is defined as the mean of the extreme value PDF, or equivalently

β = −
∫ ∞
−∞

xf(x)dx = −
∫ ∞
−∞

xF (x)
N∑
i=1

fi(x)

Fi(x)
dx. (25)

Different definitions of bias are certainly permissible and may be debated, but this definition

is consistent with the methods presented in Sec. II.A.

If the PDFs, fi(x), are normally distributed, as they are for the benchmark critical
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experiments, there is no known analytic form for β in Eq. (25), so the integral must be

approximated numerically. In Whisper, this integration is performed with the trapezoid

rule. The integration bounds are determined as the points at which the CDF is below some

tolerance εx and above 1 − εx. The integration points are refined until the result of the

integral converges to within some tolerance ε. The default values for these tolerances in

Whisper, and the ones used to compute the Whisper bias results quoted in this paper, are

εx = 1 × 10−6 and ε = 1 × 10−9; sensitivity studies were performed showing that smaller

values for either of these have a negligible effect on the integration results.

The bias uncertainty follows from how the calculational margin is defined:

σβ = m+ β, (26)

which is simply a number representing the amount that the unadjusted calculational mar-

gin exceeds the opposite-signed bias. Since the extreme value distribution is not normally

distributed, such rules as, e.g., 2σ representing a 95% confidence level do not apply. The

bias uncertainty is computed by Whisper, but never used directly. This is consistent with

ANSI/ANS-8.24, which states, “Individual elements (e.g., bias and bias uncertainty) of the

calculational margin need not be computed separately. Methods may be used that combine

the elements into the calculational margin.”

The final calculational margin is determined by adding the non-conservative adjustment

parameter ∆m from Eq. (7) to m,

CM = m+ ∆m. (27)

III.A.2 Selection of benchmark weights

In performing a validation for a specific application, benchmarks should be selected that have

similar neutronic properties that are important to the application’s multiplication factor
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k. More precisely, for an adequate determination of computational bias of an application,

the benchmarks selected should share similar sources of bias in their underlying neutronic

properties. The assertion is that the dominant source of computational bias in critical

experiment benchmarks (which implies that the experiment and descriptions thereof are

accurate and of high quality) is from uncertainties in the nuclear data. This implies that

some quantity should be used that considers both what nuclear data matters most toward

determining k, i.e., what nuclear data is k most sensitive to, and the uncertainty of that

nuclear data. A traditional parameter that has been used in the last several years [6] is the

correlation coefficient ck, which convolves both the nuclear data sensitivity coefficients and

covariance data. Based on the property that ck describes a common source of computational

bias, it may be used to assign a weight factor to compute the calculational margin.

To explain ck, the sensitivity coefficient is introduced. The sensitivity coefficient with

respect to the effective multiplication k for some nuclear data x (an isotope, reaction, and

energy range) is defined as the ratio of the relative differential change in k to the relative

differential change in x and can be written as

Sk,x =
x

k

∂k

∂x
. (28)

The sensitivity coefficients may be obtained using direct perturbations or adjoint-based meth-

ods. The former approach involves changing each nuclear data x individually by some small

fraction, and the relative change in k is found by comparing the perturbed calculated value

of k to a reference k. Performing direct perturbations is a robust approach for determining

the sensitivity coefficient but is rather cumbersome in practice when there is a large num-

ber of nuclear data that must be considered, as there always is in performing a validation

study. The alternative uses adjoint-based perturbation theory, which can estimate an arbi-

trary number of sensitivity coefficients in a single calculation. The sensitivity coefficients are
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estimated with the following ratio of adjoint-weighted integrals:

Sk,x = −
〈
ψ†, (Σx −Kx − k−1Fx)ψ

〉
〈ψ†,Fψ〉

. (29)

Here ψ is the angular neutron flux, ψ† is its adjoint function, Σx is the macroscopic interaction

cross section for nuclear data x, Kx is the scattering operator for nuclear data x, Fx is the

fission operator for nuclear data x, and the brackets denote integration over all phase space.

When the nuclear data x is not a cross section (e.g., fission ν), Σx = 0, when it does not

involve scattering, Kx = 0, and when it does not involve fission, Fx = 0. Estimating the

adjoint-weighted integrals with Monte Carlo may be done using various techniques. In terms

of automation, the iterated fission probability method is attractive because it is typically

robust and involves minimal interaction on the part of the analyst [24].

The sensitivity coefficients are organized into a sensitivity row vector S. The corre-

sponding nuclear data (relative) covariance matrix Cxx is obtained from the nuclear data

evaluation library. The covariance in k for systems A and B with respective sensitivity row

vectors SA and SB may be found by

Covk(A,B) = SACxxS
>
B. (30)

The variance is the special case when the two systems are the same, e.g.,

Vark(A) = SACxxS
>
A. (31)

The correlation coefficient ck for systems A and B is

ck(A,B) =
Covk(A,B)√

Vark(A)
√

Vark(B)
. (32)

As with normal correlation coefficients, a ck of one implies perfect (linear) correlation, and
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A and B can be thought to have identical sources of bias. If ck is zero, then the two systems

are completely dissimilar. Negative ck indicates linear anticorrelation, meaning that the

sources of bias between A and B are common, but change k in opposite directions; having a

significantly large negative ck is uncommon in practice for criticality and is usually treated

as zero correlation; Whisper sets negative ck to zero.

To turn ck into a weight factor, define the maximum and the acceptance ck, ck,max and

ck,acc respectively. The maximum ck is the largest correlation coefficient in the benchmark

population for a given application. The acceptance ck is chosen to ensure that an adequate

sample size (total sample weight) has been chosen, i.e.,

∑
i

wi = wreq, (33)

where the sample weight and the required weight wreq are to be defined.

Let the weighting factor be given by the linear relation

wi = max

{
0,

ck,i − ck,acc
ck,max − ck,acc

}
, (34)

which assigns a weight for the most similar benchmark as one, and a benchmark with a ck

right at the acceptance ck or below as zero. The choice of this linear relation is arbitrary, but

is, however, based on a couple of observations. The first is that the correlation coefficient

ck captures linear correlation and is based upon a first-order Taylor series approximation for

uncertainty propagation, and therefore a linear relationship on ck seems appropriate. Sec-

ondly, empirical studies performed in the development of this method (not presented in this

paper) show that this choice of function for the weight factor, as opposed to other possibili-

ties that were considered such as simply scaling by ck,max, usually results in relatively smooth

variations in the calculational margin with respect to variation of physical parameters, e.g.,

reflector thickness, fissile concentration, etc.

From this definition, a function for an adequate sample weight wreq within a population
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may be chosen. A logical supposition is that the more similar a benchmark in the set is

to the application, the fewer overall are needed for the validation; heuristically, this can be

thought of as having a higher confidence that the sample chosen is representative of the

application. Conversely, the required weight should increase when there is a lack of a very

close match to perform the validation. For these reasons, the following function is selected:

wreq = wmin + wpenalty (1− ck,max) . (35)

Here wmin represents the minimum sample weight that the analyst allows for the validation. A

value of 25 is selected for the results in this paper, and is based on statistical “rules of thumb”

for adequate sample sizes of unweighted populations. The quantity wpenalty represents a

penalty factor for not having a benchmark that agrees with the application. The value

should be chosen such that the required sample size grows with a lower ck,max, but does not

grow so quickly as to encompass the entire benchmark suite. Based upon the studies in this

paper, an empirical value of 100 is chosen for wpenalty.

The process for generating weight factors is as follows: First, the ck,i are computed for

all benchmarks with respect to an application. Based on this, the required weight wreq

is calculated from Eq. (35). A value of ck,acc is selected, and the weight factors for each

benchmark using Eq. (34) are computed. The criterion in Eq. (33) is checked to within

some tolerance. If the criterion is not met, a new value of ck,acc is chosen until it is. Once

the criterion is met, the sample weights are used to compute the calculational margin.

Using ck as a similarity coefficient to compute a weighting factor representing the de-

gree of relevance is not the only approach possible. A possible alliterative that warrants

investigation is a coefficient derived from the mutual information, which, unlike ck, has no

restrictions on the how the bias of each individual benchmark is distributed [25]. Others are

certainly possible is well, and a comparison of different similarity coefficients and methods

for generating weighting factors is an open area of research for Whisper and similar methods.
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III.A.3 Handling small sample sizes

It is conceivable that the criterion in Eq. (33) cannot be met because the number of similar

benchmarks in the set is too few. To address this difficulty, an interpolation to a conservative

calculational margin may be performed, i.e., a non-coverage penalty is applied. The non-

coverage penalty may be based on some user-defined value or, lacking that input from the

user, one that Whisper bases on the most biased benchmark in the set.

Let m0 be the calculational margin that would be computed had all benchmarks been

assigned unit weight, i.e., no weighting performed. This sets an upper bound for a calcu-

lational margin based upon a benchmark suite that is assumed to cover a wide application

space, but perhaps not for the specific properties of the one being analyzed. An intermediate

calculational margin m̃ is computed using Eq. (24) based upon the weight factors that were

found, which have a sum wsum. The calculational margin m is then determined from the

interpolation

m = m̃
wsum

wreq

+m0

(
1− wsum

wreq

)
. (36)

Note that when the weight requirement criterion is met, the m found by Eq. (36) reduces

to the value that would have been obtained had no interpolation been performed.

The extreme case is when all of the benchmarks in the set are too dissimilar from the

application, which does indeed arise in some circumstances. In this case, there are really

no good quantitative measures to establish the calculational margin and any result from

Whisper (or any such computational method) should be viewed with skepticism. Whisper

will default to using the user-defined value or the most biased benchmark as before to

establish the non-coverage penalty. To establish the baseline USL, the MOS for nuclear data

variability, as discussed in Sec. III.B.2, is applied in addition to the calculational margin as

usual; however, in this case this applied MOS is effectively the unadjusted uncertainty (times

some multiple to reflect the desired degree of confidence) in k from nuclear data covariances,

which usually (but not always) at the 1-σ level bounds the computational bias. The baseline
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USL is further lowered by the fixed MOS for software errors discussed in Sec. III.B.1. These

factors taken together leads to the Whisper-reported value for the baseline USL. It is then

left to the analyst to decide whether to use the value, further lower it as appropriate, reject it

completely in favor of other approaches for determining a USL, or apply non-computational

techniques to the criticality safety analysis.

Before proceeding to the discussion of how Whisper assigns the baseline MOS, a few

comments on m0 of Eq. (36) are in order. The value of m0 is typically a large conservative

number dominated by the worst-case benchmark in the entire suite. If the suite is very large,

spanning numerous areas of applicability, the value of m0 can help address the question of

how poorly software would predict an arbitrary criticality safety application; that is the basis

for interpolating to m0. The benchmark suite presented in this paper (see Sec. IV) does

have a wide range of benchmarks and m0 is 0.049, which for most applications is reasonably

conservative. This approach should be reasonable when there are some similar benchmarks,

but not enough in the entire set to meet the criterion in Eq. (33), In the extreme case of no

similar benchmarks, however, this may not be sufficient and other actions may need to be

taken on the part of the analyst.

III.B Margin of Subcriticality

The margin of subcriticality (MOS) is an additional margin prescribed by the ANSI/ANS-

8.24 standard “that is sufficiently large to ensure that the calculated conditions will actually

be subcritical.” The standard itself does not prescribe how the MOS should be defined,

other than to specify that it “should take into account the sensitivity of the system or

process to variations” of relevant physical parameters. These statements, taken together,

suggest that the criticality safety analyst should study how both the calculated k and the

predictive capability of the method and data used for calculating k vary with those physical

parameters for the model being analyzed. The MOS should therefore be set in such a way

to be bounding and ensure subcriticality for all credible variations in physical parameters
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representative of process conditions being analyzed.

Beyond this, additional considerations about the fidelity of the computational software

and nuclear data libraries should be considered. These two factors are addressed in this paper

because they pertain to the computational techniques and nuclear data, whereas everything

else about the application is necessarily left to the criticality safety analyst. Mathematically,

the calculational margin can be broken up into three terms,

MOS = MOSsoftware + MOSdata + MOSapplication. (37)

The first two of these terms are discussed in turn.

III.B.1 Margin for software errors

Setting a margin to bound the impact of software errors is a qualitative judgment about the

reliability and maturity of the software and computational method. As far as computational

methods go, continuous-energy Monte Carlo calculations use a high-fidelity representation

of the underlying nuclear interactions (no multigroup approximation) with no required ap-

proximations from meshing and homogenization of geometric zones. Therefore the intrinsic

uncertainty (as opposed to the statistical uncertainty, which is estimated by the software and

factored into the bias uncertainty) in k arising from approximations and limitations of the

Monte Carlo method itself should be comparatively very small. In practice, analysts often

introduce geometric approximations to simplify the creation of the computational models

and this would need to be factored into the MOS on a case-by-case basis.

The software for performing a continuous-energy Monte Carlo simulation, however, is

complicated and coding errors (i.e., bugs) are inevitable. The frequency and severity of the

coding errors is a function of the age of the software, current level of support, current and

historical number of users, the degree to which the software has had relevant verification and

validation performed, etc.
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Based on these considerations, a “detection limit” in k for errors in software can be

estimated. The detection limit quantifies the degree, in terms of k, that errors in the coding

would produce an incorrect answer that would not be noticed or would not have been noticed

already and therefore fixed by the software developers. It is incredibly difficult, and arguably

impossible, to quantify this using mathematical and statistical techniques. Rather, the best

one can probably hope for in developing a number for this effect is to rely on the experience

of experts familiar with both the development of the criticality software and performing

calculations with that software. For MCNP6.1, it is the expert opinion of the software

developers, considering that the results of k have intentionally not changed substantively in

years, that a value of MOSsoftware of 0.005 is a reasonably conservative detection limit for the

effect of such errors, and this number is used within the development of a baseline USL for

this paper.

The exact number can be debated, and different software packages would have different

values based upon the considerations mentioned. In determining this number, the criticality

safety analyst should consult with the software developers and, if possible, consider the

magnitude of such errors that may have historically occurred when using the particular

transport software within his or her organization. In either case, it is also the expert judgment

of the MCNP developers, considering the physical approximations in state-of-the-art Monte

Carlo methods, that a detection limit significantly lower than 0.005 for any Monte Carlo

software would be, at present, very difficult to defend.

In principle, a margin could also be devised for deterministic methods. Doing this would

be more complicated because the effects of the errors resulting from spatial discretization,

energy group collapse (e.g., self shielding of groupwise cross sections), and angular approx-

imations (e.g., quadrature set, spherical harmonics order, etc.) need to be quantified. This

applies to both the calculations of k and the sensitivity coefficients. With regard to the

sensitivity coefficients, implicit sensitivity coefficients that correct for the effect of group col-

lapse need to be calculated, and the robustness of the techniques for doing this also needs to
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be considered. This paper does not attempt to quantify a margin for deterministic software,

which would need to be done to apply the Whisper methodology with deterministic methods.

III.B.2 Nuclear data uncertainty/variability

The nuclear data covariance matrix Cxx represents the prior uncertainties of the nuclear data

from differential measurements and theoretical models. When preparing a nuclear data eval-

uation, integral measurements, e.g., critical experiment benchmarks, are used to constrain

the choices for cross sections as well, i.e., evaluators do not allow changes to nuclear data

libraries that have too adverse an effect on the agreement between calculations and critical

experiment benchmarks. Because of this fact, there exists a dependency between the nuclear

data and the critical experiment benchmarks, and the actual nuclear data uncertainties are

therefore lower than the differential measurements alone would indicate.

A generalized linear least squares (GLLS) method can adjust the nuclear data considering

both the nuclear data covariances and the benchmark experiment results. Using the adjusted

nuclear data libraries can provide a more realistic estimate of the uncertainty from the nuclear

data than simply using the nuclear data covariances to propagate uncertainties directly. This

adjusted nuclear data uncertainty may then be used to set a portion of the baseline MOS.

A summary of the GLLS method for nuclear data adjustment is provided here. A more

comprehensive overview of the GLLS technique and its development can be obtained in Ref.

[6]. These techniques are currently implemented in the TSURFER module of SCALE [13].

Given the sensitivity vector (first derivatives) and the covariance matrix for the bench-

mark experiments, it is possible to perform an adjustment of the nuclear data that minimizes

the bias within the constraints of the covariance data. Specifically, the GLLS technique

minimizes the χ2 statistic, which is a quadratic function that sums the adjusted relative

differences of the calculated k values from their respective reference benchmark values and
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the proposed change in the nuclear data from their means:

χ2 = [∆k]>Ckk [∆k] + [∆x]>Cxx [∆x] . (38)

∆k is a column vector representing the relative difference in k for each benchmark after the

adjustment predicted by the sensitivity coefficients, Ckk is the relative covariance matrix

of the benchmark experiments including benchmark correlations where they are known,

∆x is a column vector with elements that are the relative difference of the nuclear data

from their means, and Cxx is the relative covariance matrix for the nuclear data. With no

adjustment, the ∆x are all zero so the χ2 is determined solely from the differences in the

k of the benchmark experiments from their reference values. As the data are adjusted, the

differences in the benchmark k may decrease, therefore decreasing the first term in Eq. (38);

however, this also increases the differences in the nuclear data and therefore increases the

second term in Eq. (38).

The goal of the GLLS adjustment is to find the nuclear data adjustment that minimizes

χ2 by balancing these two competing effects. The minimum χ2 is

χ2
min = d>C−1dd d, (39)

where d is a column vector of relative differences in the calculations from benchmark exper-

iments, and C−1dd is the inverse of the covariance matrix of the relative difference vector. The

covariance matrix of the difference vector for a set of benchmark experiments can be found

using

Cdd = BCkkB + SB,kxCxxS
>
B,kx. (40)

B is a diagonal matrix containing the ratio of the benchmark k to calculated k, and SB,kx is

a matrix where each row is the sensitivity vector for each benchmark experiment.

The GLLS method, through its nuclear data adjustment, also allows for an adjustment
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of the nuclear data covariances. The adjusted or residual covariance matrix is found by

Cx′x′ = Cxx −
[
CxxS

>
B,kxC

−1
dd SB,kxCxx

]
. (41)

This residual covariance matrix Cx′x′ may be used to determine an adjusted uncertainty in

k because of the uncertainties in nuclear data. The adjusted uncertainties in k for a set of

applications may be found with the sandwich rule:

Ck′k′ = SA,kxCx′x′S
>
A,kx. (42)

Here SA,kx is a matrix with rows as the sensitivity vectors for the applications, and Ck′k′ is

the covariance matrix for k of the applications.

The square root of the diagonal elements of Ck′k′ are the adjusted 1σ relative uncertainties

of k from the adjusted nuclear data covariances. The portion of the MOS for nuclear data

uncertainty/variability for an application i is set using

MOSdata = nσC
1/2
k′k′,ii, (43)

where C
1/2
k′k′,ii is the square root of the ith diagonal element of the adjusted application

covariance matrix and nσ is a factor for the desired confidence level q, which for this paper

is 0.99. If the underlying data are assumed to be normally distributed, this leads to a value

of nσ = 2.6, i.e., roughly the number of standard deviations that would enclose 99% of the

samples from a normal distribution. The assumption of normality may or may not be justified

here, but it is consistent with the assumptions made when applying the sandwich rule in Eq.

(42) to compute the adjusted uncertainties. Furthermore, this factor nσ and the required

assumptions behind it are not used for the determination of the calculational margin, but

rather to set what should be a reasonable MOSdata (see Sec. III.B.3 for a demonstration of

its reasonableness), a factor applied in addition to the calculational margin.
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III.B.3 Comments on the adjusted covariance library

Even though the nuclear data evaluations were influenced by the critical experiments, the

information available to the GLLS method does not consider exactly which benchmarks may

have influenced particular evaluations and how. Therefore, the resulting covariance libraries

will be similarly limited in accuracy, and observations show correlations between nuclear

data sets that are likely not real.

Because of the inherent limitations involved in generating the adjusted nuclear covariance

data library and the resulting spurious correlations within, using it to calculate ck similarity

coefficients is undesirable, as it introduces what are also most likely spurious dependencies

between different benchmarks and applications. Testing performed, but not presented in

this paper, demonstrates this.

It is a bit of an inconsistency to use two different nuclear covariance libraries for different

purposes, i.e., the prior covariances to estimate similarity coefficients and the adjusted ones

to compute the nuclear data uncertainties. Recall, however, that the purpose of performing

a GLLS nuclear data adjustment is to attempt, in determining a margin of subcriticality

and not the calculational margin, to capture the correlations between the nuclear data eval-

uations and the critical experiment benchmarks, which are not reflected in the prior nuclear

covariance data.

Even with the issue of what are potentially spurious correlations, the adjusted libraries

provide more realistic estimates of the uncertainty and variability of k than is obtained when

using the prior, unadjusted nuclear covariance data. This is evidenced by the fact that the

1σ uncertainties in k from the prior nuclear covariance data appear to bound most of the

discrepancies of the critical experiment benchmark results; whereas, if there is no dependency

between the nuclear data evaluations and the benchmark experiments, then the typical rules

of standard deviations of normal distributions should apply (after considering experimental

correlations of the benchmarks).

For example, the calculated 1σ uncertainty in k of the Jezebel benchmark, a bare sphere
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of Pu metal, from using the prior covariances provided with Whisper is about 0.0139. The

adjusted nuclear data covariances predict a 1σ uncertainty in k of about 0.00075, which

is significantly smaller. Comparisons of different nuclear data libraries (ENDF/B-VII.1,

JENDL-4.0, and JEFF-3.1.1) in Ref. [26] show a range of k of about 0.0019 (within 1σ

of the benchmark uncertainty of 0.002), which is just within the 99% confidence interval

(nσ = 2.6) predicted by the adjusted nuclear covariance data libraries. The 1σ nuclear

data uncertainty in k from the prior covariances is over a factor of seven larger than the

empirically observed variation for this benchmark. Using the prior nuclear covariance data

to set MOSdata would therefore be overly conservative.

Ideally, there would be a single covariance library that would consider the dependency

between the nuclear data evaluations and benchmark experiments. This library would have

reduced overall uncertainties (as a result of having additional information in the form of inte-

gral benchmark experiments available to the evaluator) and additional correlations between

different isotopes and reactions over different energy ranges as a result. Correlations between

the nuclear data and the critical benchmark experiments would have to be quantified as part

of this hypothetical library as well. Unfortunately, no such library exists, and attempting to

produce one considering these difficult to quantify effects is an open area of research.

III.C Estimating Unknown Benchmark Uncertainties

Sometimes it may be desirable or necessary to incorporate benchmarks that do not have

rigorously quantified uncertainties. Ideally a benchmark uncertainty would be quantified

through detailed analysis of the experiment and the model approximations. Unfortunately,

this is not always feasible. An alternative, but ad hoc, approach is to assign a benchmark

uncertainty based upon the uncertainties of benchmarks that are similar to the one question.

In these cases, Whisper uses weighted averages of the variances (of those benchmarks

with a quantified uncertainty) to determine a representative benchmark uncertainty when

one is not provided. The weighting factors in the averaging are the ck parameter with all
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the other benchmarks. For example, if benchmark B does not have a known uncertainty,

the other N benchmarks with uncertainties are used to estimate it via a weighted average:

σ2
B =

N∑
i=1

ck,iσ
2
i

N∑
i=1

ck,i

. (44)

Of course, this value is not a true benchmark uncertainty, which takes into account uncer-

tainties in the actual experiment and approximations in creating the benchmark model, but

it does serve as a surrogate representing a typical uncertainty for experiments of its type. It

is also a more realistic and conservative assumption to apply such an uncertainty as opposed

to simply using zero as the uncertainty.

This approach leads to additional correlations of the benchmark uncertainties (not the

benchmark measurements of k). Whisper does not currently account for these or any other

correlations between or uncertainties of the benchmark uncertainties.

III.D Benchmark Rejection

The benchmark experiments and the input files describing them are going to be of variable

quality, and, for a suite that is sufficiently large, a small percentage are likely to be of poor

quality. Consequently, the calculational margin can be biased (either conservatively or non-

conservatively) because of these errant benchmark descriptions. Furthermore, the nuclear

data adjustment used to determine the residual nuclear data uncertainties is less effective in

the presence of such benchmarks, and the resulting MOS is larger than it would otherwise

be.

The presence of poor quality benchmarks may be detected if the nuclear data cannot

be adjusted consistently, considering the uncertainties of the benchmarks and nuclear data,

to eliminate the computational biases in the benchmarks. The benchmarks causing this

inability to perform a consistent nuclear data adjustment can then be identified and rejected,
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i.e., removed from the validation suite.

The techniques for this purpose that are employed by Whisper are the same as those

developed and implemented within the TSURFER package in SCALE [13, 27]. A brief

discussion of the concepts is given here.

The χ2
min calculated by the GLLS nuclear data adjustment measures the degree to which

the linear regression can fit the benchmark experimental data within the nuclear covariance

data. A χ2
min per degree of freedom of unity (assuming the set of benchmarks is large,

otherwise it is slightly less) indicates a perfect regression. Values greater than one indicate

that the regression model could not perfectly fit the data, and that there are inconsistencies in

the adjustment, i.e., there are likely other sources of bias, the quoted benchmark uncertainties

are too small, and/or the nuclear data covariances indicate less uncertainty than there is in

actuality. Values less than one are possible, indicating that the quoted uncertainties are

larger than they should be. In practice, values of χ2
min > 1 are observed.

The threshold value of χ2
min that is appropriate is application specific. Empirically deter-

mined rules of thumb typically give an acceptable χ2
min between 1.2 and 1.6. For this paper,

a threshold χ2
min value of 1.2 is used, which is the default in Whisper.

If the computed value of χ2
min is greater than the threshold, then benchmarks should be

rejected until the threshold is met. There are various techniques, with varying degrees of

rigor, for selecting which benchmarks to reject. The method used by Whisper and in this

paper is the iterative diagonal χ2 method. The diagonal χ2 for the ith benchmark is found

by

χ2
diag,i = diC

−1
dd,iidi, (45)

where di is the discrepancy (difference of the calculated k from its reference value) of the

ith benchmark and C−1dd,ii is the ith diagonal element of the inverse of the covariance matrix

of the discrepancy vector. The benchmark with the largest χ2
diag,i is rejected and χ2

min is

recomputed. If the new χ2
min is within the threshold χ2

min value, the rejection stops and the

remaining benchmarks are accepted. If not, then C−1dd is recomputed and the process repeats
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until the threshold χ2
min is met.

The iterative diagonal χ2 method is not the most rigorous method available. A more

rigorous approach is the ∆χ2 method, which recomputes χ2
min without benchmark i for all

benchmarks. The benchmark that results in the largest change in χ2
min is rejected (hence the

naming of the method). As with the iterative diagonal χ2 method, the process repeats until

the threshold χ2
min is attained. The disadvantage of using the iterative diagonal χ2 method

versus the ∆χ2 method is that it tends to reject a greater number of benchmarks that may

in actuality be of acceptable quality.

To illustrate the tradeoffs, performing the more rigorous ∆χ2 rejection method on the

benchmark suite used for the results in this paper containing 1,086 benchmarks using the

available computing platform (a single node of the Moonlight cluster at LANL consisting

of two Eight-Core Intel Xeon model E5-2670 at 2.6 GHz using 16 OpenMP threads) would

take an estimated 3-4 months, which is not practical for a suite of this size. Conversely, the

iterative diagonal χ2 method can complete the entire rejection within about four hours. For

reasons of practicality, the iterative diagonal χ2 method was implemented into Whisper and

used in this paper.

III.D.1 Comments on the parametric nature of the benchmark rejection

Regarding the non-parametric nature of the computation of the calculational margin in

Whisper, an inconsistency arises when excluding the benchmarks identified by the GLLS

rejection. Strictly speaking, the use of a linear regression model based on a χ2 minimization

for the rejection of benchmarks introduces a parametric element to the method. Furthermore,

having an insufficient number of similar benchmarks in the set and using the approximate

iterative diagonal χ2 method for the rejection criterion may lead to the method erroneously

rejecting benchmarks in some cases or failing to identify outlier benchmarks that ought be

rejected in others.

This question and its impact on the analysis are not resolved in this paper and remain
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open for further study. The results for Whisper in Sec. V exclude the benchmarks and are

not significantly impacted whether they are retained or excluded. Should this be a concern,

the Whisper software itself makes it straightforward to include all the benchmarks by simply

omitting the exclusion file on the command line (see Sec. III.E and Ref. [14] for further

details).

III.E Workflow for the Whisper Software

After installation of the Whisper software, the workflow for using Whisper has two phases:

setup and running applications. Complete instructions may be obtained in Ref. [14], but a

summary is given here to illustrate how a user interacts with the Whisper software.

III.E.1 Setup for an an area of applicability

The setup phase is typically done once per AOA. First, the suite of benchmarks provided with

Whisper (see Sec. IV.B) should be analyzed to determine if it contains an adequate set for

the particular AOA. If it does, then the excluded benchmark list from a benchmark rejection

and the adjusted covariance libraries are available with Whisper, and the analyst may simply

use the available information and skip further setup and begin running applications.

If the current suite in not adequate, then the analyst must find appropriate benchmarks

and create MCNP input files, inserting benchmark k and uncertainty information at the

bottom of those files as discussed in Ref. [14]. Once this task is done, a script called

whimcnp is available with Whisper that may be used to run these MCNP input files via batch

submission on a computing cluster; the whimcnp script will automatically insert appropriate

lines of input to generate the applicable sensitivity profiles.

After the MCNP runs have completed, a script called ww, the “Whisper Wrapper”, will

extract the sensitivity profiles from the output files and place them in a personal library

directory along with a table of contents file. The Whisper Wrapper will also run Whisper

with these files as applications, but this calculation may be aborted for now as it serves no
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purpose yet. Next, a shell utility script called AppendBenchmarks may be used to merge the

new benchmarks with the current set in Whisper.

Following this, a GLLS nuclear data adjustment should be performed to reject inconsis-

tent benchmarks and produce an adjusted covariance data library for future use. Before doing

this, however, the analyst should also investigate any available experimental benchmark cor-

relations and modify the provided correlations file accordingly, as these will be considered by

the GLLS nuclear data adjustment. Some correlation data is available in the International

Criticality Safety Benchmark Experiment Project (ICSBEP) Handbook [28] via DICE [29],

the Database for ICSBEP, which is distributed with the Handbook and available online. If

enough data about commonalities in the experiments are known, the correlations may also

be determined using various techniques [30, 31, 32, 33] that are outside the scope of this

paper.

Whisper is run in this mode and the file of recommended benchmarks to exclude and

a new adjusted covariance library are produced. This exclusion file should replace the

old one available with Whisper and may be done by simply overwriting the file. Replac-

ing the adjusted covariance library is a bit more complicated, and a utility script called

UpdateCovarianceData is provided that consistently overwrites the available data with new

ones.

Once this is finished, all the information is available for analysis of applications within

the AOA.

III.E.2 Analysis of applications

Assuming the benchmark suite, benchmark exclusion files, and adjusted nuclear covariance

data is appropriate for the AOA being considered, the analyst may begin studying applica-

tions.

The first step is to prepare MCNP input files that model the particular application or

set of applications being studied. Often this will involve a parametric study to determine
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a bounding case. As with the setup phase, the whimcnp script may be used to run the

MCNP inputs of the applications to obtain the appropriate sensitivity profiles, with the only

difference being that there is no available benchmark k and uncertainty. Once these MCNP

runs complete, the Whisper Wrapper, ww, may be used to extract the sensitivity profiles into

an application library and to run the Whisper program; if excluding benchmarks is desired,

the user specifies the benchmark exclusion file on the command line.

The Whisper program will read in the benchmark and application sensitivity profile infor-

mation and the unadjusted and adjusted covariance libraries. The nuclear data uncertainties

of the applications will then be computed using the adjusted covariance library, which will

be used as part of computing the MOS. Then, for each application, Whisper will compute

the ck similarity parameter for every benchmark, choose an appropriate set, assign weight-

ing factors, and compute a calculational margin from the extreme value distribution. The

following information is printed to an output file for each application: the required sample

weight, which benchmarks were used to validate each application and their corresponding

ck and weight factors, bias and bias uncertainty, MOS from software and nuclear data un-

certainty, and any non-coverage penalty that had to be applied to the calculational margin.

After all applications have finished, a summary table of calculational margins, MOS values,

baseline USLs, and the amount that k exceeds the baseline USL [the δA parameter in Eq.

(3)] is written to the output file and the screen.

Given the output, the NCS analyst can then determine the regions of the parameter space

with δA < 0, which can be assured to be subcritical. More precisely, this value is indicative

of a baseline USL or an upper limit on it. It does not relieve the criticality safety analyst

from considering any additional factors that are not captured as part of the computational

analysis. Before subcriticality of particular configurations is determined, whether these ad-

ditional factors exist must be considered, and if they do, the impact they would have on the

determination of subcriticality must be assessed.
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IV BENCHMARK SUITES

Before validation may be performed by Whisper or with any other statistical technique, a

suitable benchmark suite must be provided. This section first discusses the general consid-

erations that arise when selecting benchmarks for the suite to be used with Whisper. Next,

the benchmark suite that is distributed with Whisper is described.

IV.A Considerations for Creating a Benchmark Suite

For the technique outlined in this paper to be effective, a suitably-sized suite of critical

experiment benchmarks should be constructed that, at a minimum, adequately addresses

the desired AOA to the extent possible. The method will determine appropriate weighting

factors to be applied to each benchmark using the S/U techniques. Furthermore, the same

GLLS techniques can be used to reject benchmarks that are inconsistent with the nuclear

data adjustment; this indicates that there may be other significant sources of bias other

than the nuclear data, e.g., the benchmark may be poorly described, the input file may have

errors, etc.

The GLLS nuclear data adjustment is more effective and accurate when it is given more

information, i.e., the suite of benchmarks is the largest available even if there are significant

portions outside the AOA for the application. An AOA for validation is decided typically on

fissionable material and its form (e.g., metal versus oxide), spectral characteristics, reflector

materials, etc., and when considering one AOA, there may be shared materials used in similar

neutron spectra in other AOAs. The GLLS nuclear data adjustment can take advantage of

this fact and provide a more accurate set of adjusted nuclear data and covariances.

If at all possible, benchmarks should be selected so as not to have common sources of

potential systematic bias, e.g., the benchmarks experiments should have been performed at

a variety of facilities and by different experimenters spanning a large amount of time, the

benchmark descriptions should have been evaluated and reviewed by various individuals,

etc. Doing this helps minimize systematic bias that may arise from a particular facility,
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experimenter, or approach. For benchmarks that have such commonalities, experimental

correlations of the benchmark measurements of k should be obtained if they are available or

developed when it is feasible.

All of these considerations should be made for any benchmark suite used with Whisper.

Next, the specific benchmark suite distributed with Whisper (and used to generate the

results in this paper) is discussed along with the results of the benchmark rejection that was

performed.

IV.B Whisper-Provided Benchmark Suite

The benchmark suite distributed with Whisper contains 1,086 critical experiment bench-

marks from the ICSBEP Handbook [28]. The benchmarks were selected to cover a wide

range of fissile materials (uranium at various enrichments, 233U, and Pu), fissionable ma-

terial form (metal, compound, and solution), and spectral characteristics. The benchmark

experiments used in this suite are from numerous different sources, minimizing any potential

systematic biases resulting from commonalities in the experiments or evaluations. Table II

gives a summary of the benchmarks by ICSBEP identifier. A full listing of the benchmarks

is available in Ref. [15].

MCNP models of the benchmark experiments were obtained from the previous NCS

validation suite [34, 35], the Mosteller Expanded Criticality Suite for MCNP validation [36],

the Kahler validation suite for ENDF/B-VII.1 nuclear data testing [37], and, when needed

and unavailable elsewhere, MCNP models were prepared and independently reviewed. All

calculations of the critical experiment benchmarks were run with MCNP6.1 using ENDF/B-

VII.1 nuclear data.

In five benchmark cases (HEU-MET-FAST-0042 and the four cases of IEU-MET-FAST-

2The HEU-MET-FAST-004 benchmark is a single experiment that was a sphere of highly-enriched ura-
nium metal in a cylindrical water tank. The experiment was performed at Los Alamos National Laboratory
in 1976.
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0013), the benchmark uncertainties are not provided by the ICSBEP Handbook. Estimates

of their uncertainties were precomputed by Whisper using Eq. (44) with the ck values

computed for the other 1,081 benchmarks. These approximated uncertainties are used by

default in Whisper. The impact of using them should be minor, as it only is applied to five

out of 1,086, fewer than 1%, of the benchmarks. None of these are particularly important

for the results of the case studies presented in Sec. V.

In cases where two one-sided (i.e., asymmetric) benchmark uncertainties are given, the

larger of the two is assumed for conservatism.

The experimental benchmark correlation data from the ICSBEP Handbook (via DICE,

the Database for ICSBEP, which is distributed with the Handbook and available through

the internet [29]) are used where numerical values are provided.

The covariance data that were used come from the 44-group covariance library [38] that

is distributed with SCALE6.1.

With this information, the 1,086 benchmarks are run through a GLLS nuclear data

adjustment and a rejection using the iterative diagonal χ2 method is performed, leaving 972

benchmarks. The benchmarks remaining are summarized in Table II by ICSBEP identifier,

and a complete listing is given in Ref. [15]. The inclusion of the experimental benchmark

correlations available in DICE at the time of access results in only minor changes to the

benchmarks rejected, and impact on the case study results presented in Sec. V is negligible.

V EXAMPLE ANALYSES

Now that the Whisper methodology has been developed (Sec. III) and an underlying bench-

mark suite created (Sec. IV), illustrative analyses of hypothetical case studies can be per-

formed. Four such cases are considered. The first case is a set of varied masses of spherical Pu

metal-water mixtures with neutronically infinite water reflection. The second case is infinite

3The IEU-MET-FAST-001 benchmark consists of four experiments that were bare cylindrical configura-
tions of enriched and natural uranium. The experiments were performed at Los Alamos Scientific Laboratory
between 1952 and 1954.
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square-pitch arrays of light-water moderated LEU-oxide fuel lattices with varied enrichments

and pitches. The third case is metal-water mixtures of LEU and Pu at varying concentra-

tions. The fourth case is infinite triangular-pitch lattices containing graphite-moderated

MSR fuel with varied 233U/232Th concentrations and pitches.

All material compositions were taken from Ref. [39] except where noted otherwise. As

with the benchmarks, the calculations were run with MCNP6.1 using ENDF/B-VII.1 nuclear

data. Also, the 44-group covariance data that is distributed with SCALE6.1 was used. The

unweighted calculational margin m0 for the benchmark suite is about 0.049.

All statistically derived quantities from Whisper in this section are taken at the 99%

confidence level, which is also the default in Whisper. Comparisons with the standard,

parametric approach in Sec. II.A.1 use a 99/99 single-sided tolerance factor. The reason

that the 99% confidence level is used as the Whisper default and in this paper, as opposed

to the more typical 95% level (or a 95/95 single-sided tolerance factor with the standard,

parametric approach), is because the Nuclear Criticality Safety division at LANL has elected

to use these confidence levels in its validation of MCNP. There is nothing inherent in the

Whisper methodology that prevents the use of a 95% confidence level (or any other), and

the Whisper software allows the user to specify the desired confidence level with a “user

options” file.

The four cases are now discussed followed by a summary of the results.

V.A Critical Mass of 239Pu

The first application creates a critical mass curve for spherical 239Pu metal-water mixtures

with neutronically infinite (thickness of 100 cm) water reflection. More accurately, the curve

is for a mass that can be assured to be subcritical for a given hydrogen-to-metal atomic ratio

(H/X). A parametric study is performed by varying 239Pu mass (the plutonium is assumed

to be pure 239Pu) and H/X in the sphere. The density of plutonium metal is taken as 19.85

g/cm3 and the density of water is 1.0 g/cm3. The density and radius of the sphere consisting
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of the metal-water mixture are derived from the 239Pu mass and H/X.

The calculated k as a function of H/X and mass is given on the surface plot in Fig. 2.

Contour lines (drawn with a basis spline or B-spline) for various values of k are shown as well.

The k = 1 contour (where criticality is predicted) follows known behavior. The predicted

critical mass for dry plutonium metal with neutronically-infinite water reflection is about

5,500 g (not shown in Fig. 2 because H/X is on a log scale). As the plutonium is diluted

with water, the critical mass increases to over 10,000 g (moderation is not yet sufficient to

thermalize a significant fraction of the neutron population), then decreases to around 500-600

g as the neutron energy spectrum thermalizes (optimal moderation is predicted for an H/X

of around 700), and finally increases again sharply as the plutonium becomes too dilute to

sustain a nuclear chain reaction.

For criticality safety analysis, a mass below the k = 1 contour cannot be taken to be

subcritical because of the computational biases and uncertainties discussed in Sec. III.

Rather, a curve that considers these effects, i.e., the USL, is desired.

With the method outlined in this paper, the first step toward developing this curve is

to determine the calculational margin for each case considered as part of this parametric

study. The computed calculational margin from Eq. (27) is displayed in Fig. 3. The

calculational margin for H/X < 1 is relatively flat around 0.0128, as a consequence of

the relative abundance of fast critical benchmarks. For H/X between 1 and 10, however,

the calculational margin increases sharply to ranging from 0.028 to 0.031; this is because

the system has an intermediate energy spectrum where there are few quality benchmarks

available. When H/X exceeds 10, the spectrum begins to thermalize; the calculational

margin decreases again as the system becomes neutronically similar to the plutonium solution

benchmarks. Note that the calculational margin is lowest in the region around where the k =

1 curve predicts optimal moderation, 0.0125, which is slightly lower than the calculational

margin in the fast regime. The reason is that there are a large number of solution benchmarks

that consistently predict values of k that are higher than the benchmark values.
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The bias β computed by Whisper [using Eq. (25)] is negative for all cases and therefore

no additional non-conservative bias adjustment is needed [i.e., ∆m = 0 from Eq. (7)] to the

calculational margin in order to prevent the use of non-conservative bias.

The next effect to consider toward determining the USL is the MOS for the nuclear

data variability because of their uncertainties [MOSdata from Eq. (37)]. The nuclear data

adjustment is quite effective at reducing the nuclear data uncertainties; the application

uncertainties are reduced by factors of 10-15 in the fast (H/X < 1) regime, 7-9 in the

intermediate (1 < H/X < 10) regime, and 15-30 in the thermal (H/X > 10) regime.

Figure 4 shows MOSdata [Eq. (43)] from this variability corresponding to the 99% con-

fidence level. Again, the trend is much the same as in Fig. 3 for the calculational margin,

illustrating the ability or inability of the nuclear data adjustment to consistently reduce the

nuclear data uncertainties. The fast range has an MOSdata of around 0.0020 for H/X = 0

and increases with H/X to 0.0025 at H/X = 1. MOSdata peaks around 0.0042 for the

intermediate spectrum at H/X = 4, where the nuclear data adjustment cannot reduce the

uncertainties as much because of the scant number of benchmarks in that regime. The small-

est MOSdata values are about 0.0016 at optimal moderation, where there is a large number

of consistent benchmarks, and therefore the nuclear data adjustment is quite successful and

can significantly reduce the uncertainty in k from nuclear data.

An additional margin MOSsoftware of 0.005 is applied globally to account for the effect of

undetected errors in transport software (MCNP6) as discussed in Sec. III.B.1.

Figure 5 displays the resulting USL from Eq. (2) as a function of plutonium mass and

H/X. As would be inferred from Figs. 3 and 4 for the calculational margin and MOS,

the USL is does not vary much for the fast systems (H/X < 1), being around 0.98 at

H/X = 0 and falling slowly as H/X increases. The USL falls rapidly to 0.955 to 0.960 in

the intermediate spectrum regime (H/X between 1 and 10). The USL then increases for

H/X > 10, peaking to around 0.981 for optimal moderation. The USL is weakly dependent

upon Pu mass, having no sharp variations near the predicted critical masses.
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The subcritical mass curve (i.e., the value of the plutonium mass that can be taken as

subcritical) as a function of H/X corresponds to the δA = 0 contour, where δA again is the

amount, in terms of k, that the USL is exceeded [Eq. (3)]; negative values of δA can be taken

to be assuredly subcritical. The δA parameter as a function of plutonium mass and H/X is

shown in Fig. 6. Subcriticality for a dry metal (H/X = 0) with “infinite” water reflection

can be assured for a mass of about 5,000 g (not shown in Fig. 6 because it is on log scale),

which is around 500 g lower than the predicted k = 1 value. In the intermediate range,

the subcritical mass curve peaks at just under 8,500 g; this is significantly lower than the

slightly over 10,000 g critical mass predicted by k = 1 (Fig. 2), accounting for the largest

difference between the two curves, which is a consequence of having few benchmark critical

experiments that have an intermediate spectrum. The subcritical mass decreases to about

400-450 g at optimal moderation, which is only 100-200 g lower than what the k = 1 curve

would predict; again, this is because of the large number of benchmark critical experiments

at optimal moderation that consistently predict a high value of k.

Estimation of the calculational margin, and hence the USL, depends upon the ck pa-

rameter from Eq. (32) for the selection of relevant benchmark critical experiments. The

parameter space for this study spans the entire neutron energy spectrum from fast to ther-

mal, and which benchmarks are relevant depends upon the H/X of the application system

being considered. For the fast systems (H/X < 1) the most relevant benchmark is PU-MET-

FAST-011.4 In the intermediate regime, 1 < H/X < 10, the most relevant benchmarks are

various cases of the PU-COMP-MIXED-001 or PU-COMP-MIXED-002 benchmarks.5 In

this regime, the benchmark data is sparse, and, furthermore, the results of calculations

and quoted benchmark experiment values do not agree well. When H/X > 10, the PU-

4The PU-MET-FAST-011 benchmark is a single experiment that was a sphere of alpha-phase plutonium
metal in a cylindrical water tank. The experiment was performed at Los Alamos Scientific Laboratory in
1968.

5These PU-COMP-MIXED benchmarks had active fuel that were compacts of polystyrene and PuO2.
The PU-COMP-MIXED-001 cases were unreflected and the PU-COMP-MIXED-002 cases were reflected by
plexiglass. The experiments were performed at the Hanford Plutonium Critical Mass Laboratory between
1963 and 1970.
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SOL-THERM benchmarks become most relevant; the specific benchmark case that is most

relevant varies and correlates with H/X.

To distill the data about which benchmarks are most relevant, suppose the benchmark

experiments are grouped by spectra: fast, intermediate/mixed, and thermal. The application

cases along the subcritical mass curve (i.e., the case of plutonium mass where |δA| is at a

minimum for each H/X) are chosen as the most relevant ones to analyze as they determine

the various mass limits. The maximum ck used to determine the calculational margin for

each spectral classification is obtained for each application case along the subcritical mass

curve; if no benchmarks of that spectrum are used, then the value is set to zero.

These maximal ck grouped by benchmark spectrum as a function of application H/X

are shown in Fig. 7. The various application regimes as a function of application H/X are

illustrated here.

For H/X near zero, the maximum ck for the fast benchmarks exceeds 0.99 and steadily

decreases. The fast benchmarks are most relevant until an H/X of about 2 where the

intermediate/mixed become more neutronically similar, and they are completely supplanted

for the purposes of determining the calculational margin at an H/X of around 4. The

intermediate/mixed benchmarks are relevant for the H/X ranging from about 0.9 to around

40. Between H/X of 10 and 20, the thermal solution benchmarks become more important

than the intermediate/mixed ones, and the thermal benchmarks completely overtake the

intermediate/mixed (there are sufficiently many that the intermediate/mixed benchmarks

are no longer necessary for the validation) at around H/X of around 40. As H/X increases,

the maximum ck for the thermal benchmarks also increases and peaks at a value over 0.999

around optimal moderation, which is at an H/X of around 700.

For comparing the calculational margin obtained with the standard approaches outlined

in Sec. II.A, the validation for the 239Pu mass is broken up into the fast, intermediate/mixed,

and thermal regimes. The benchmarks that correspond respectively are categorized as Pu

or metal, compound (oxide), and solution. The PU-MET-FAST, PU-COMP-MIXED, and
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PU-SOL-THERM benchmarks in the validation suite (after rejection by the GLLS nuclear

data adjustment) are used to determine the calculational margin for the fast, intermediate,

and thermal regimes respectively. The metal and solution (fast and thermal) cases pass

the Shapiro-Wilk normality test, and therefore the parametric approach discussed in Sec.

II.A.1 is appropriate. The oxides do not pass the Shapiro-Wilk normality test, and the

non-parametric, rank-order method in Sec. II.A.2 must be used for that case.

For the fast range, using the PU-MET-FAST benchmarks, the mean multiplication factor

k̄ based on inverse variance weighting [Eq. (5)] is 1.0004. On average, MCNP6.1 with

ENDF/B-VII.1 nuclear data calculates k slightly high; as per standard practice, the bias

β [Eq. (6)] is set to zero to not non-conservatively take credit for positive bias. The bias

computed by Whisper, which is defined differently as a mean of the extreme value distribution

[Eq. (25)], for the fast regime is about -0.0067. The weighted standard deviation in k about

the mean sk [Eq. (9)] is 0.0028 and the average standard deviation in k σ̄k [Eq. (10)] is

0.0020. The pooled standard deviation, and hence the bias uncertainty, σβ [Eq. (8)] is

0.0035. Because the bias is set to zero, the calculational margin from Eq. (15) with single-

sided tolerance factor κ = 3.12 [Eq. (11)] is 0.0109. The Whisper result is 0.0128, which is

certainly conservatively bounding of the result from the standard parametric approach. Note

that including all the MIX-MET-FAST benchmarks (after rejection), many of which have

239Pu as the dominant fissile isotope, decreases the calculational margin from the standard

parametric approach to 0.0103, mainly because the sample size increased, decreasing κ to

2.91.

For the intermediate range, using PU-COMP-MIXED benchmarks, the rank-order, non-

parametric approach is used. In this analysis, the rank-order, non parametric approach

is applied using all 34 PU-COMP-MIXED benchmarks as well as (separately) only the 17

PU-COMP-MIXED benchmarks left after the rejection. Either way, the minimum k̃ is

0.98138 with a combined uncertainty of 0.00720. This corresponds to case 5 of PU-COMP-

MIXED-001. The value of CNP [Eq. (17)] depends on whether the rejected benchmarks are
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considered or not. If the rejected benchmarks are not used, CNP = 0.582, and if they are,

CNP = 0.825. From Table I, the corresponding non-parametric margins mNP are 0.04 and

0.01. This leads to calculational margins that are 0.077 and 0.047 respectively, compared

with the calculational margin of about 0.03 computed by Whisper in the intermediate range.

The calculational margins for the non-parametric, rank-order approach are more conser-

vative than the Whisper result, especially if the rejected benchmarks are not included. This

difference arises from both the existence of the non-parametric margin and the weighting

of benchmarks. With regard to the non-parametric margin, Whisper does have a simi-

lar concept, the non-coverage penalty, but it is not applied here as in all cases Whisper

was able to find enough relevant benchmarks from other categories (PU-MET-FAST, PU-

SOL-THERM, MIX-MET-FAST, MIX-COMP-THERM, and MIX-SOL-THERM) to meet

its sample weight requirement. In other words, the S/U methods are able to search the entire

benchmark suite beyond the PU-COMP-MIXED benchmarks to find benchmarks that are

neutronically similar.

Also, case 5 of PU-COMP-MIXED-001 is never given a particularly high weight for this

application; the weight factor is never much greater than 0.21. The ck value steadily increases

as the spectrum softens, from 0.7 when it first appears for the cases with harder spectra to

0.9 when it is overtaken by the large quantity of solution benchmarks for the cases with

softer spectra. In the intermediate range, the benchmark that, according to Whisper, is

most relevant is case 7 of PU-COMP-MIXED-002, which has a ck that ranges from 0.88 to

0.96 and a weight of 1.0.

Note that there is seemingly an inconsistency by using p = 0.95 as opposed to p = 0.99.

This is not the case, because p is only used to calculate CNP , which is not used directly

except to obtain a non-parametric margin mNP from Table I. Ref. [16], the source of the

data in Table I, only gives values for p = 0.95. Consistent values could be generated for

p = 0.99, changing the ranges of CNP , but the results would be identical.

Had the benchmark data for the PU-COMP-MIXED cases been normally distributed,
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the parametric approach could have been applied. For illustration, the calculational margin

is computed as if this had been the case. The mean multiplication factor k̄ based on inverse

variance weighting is 1.0099 and therefore the bias β is set to zero; for comparison, the bias

as defined by the Whisper methodology is -0.0114. The weighted standard deviation in k

about the mean sk is 0.0089 and the average standard deviation in k σ̄k is 0.0064. The

pooled standard deviation, and hence the bias uncertainty, σβ is 0.0117. Because the bias

is set to zero, the calculational margin from Eq. (15) with κ = 3.89 [Eq. (11)] is 0.0455.

This is more conservative than the about 0.03 value that Whisper calculates. The reason for

this is the small sample size of PU-COMP-MIXED benchmarks that is used in the standard

analysis, i.e., the single-sided tolerance factor κ has a large value that magnifies the bias

uncertainty. Including all the PU-COMP-MIXED benchmarks (not rejecting any) decreases

the calculational margin to 0.0419 primarily because κ falls to 3.35. If κ had its limiting

value of 2.7 for a very large sample size and everything else was fixed with no benchmarks

rejected, the calculational margin would be about 0.033, which is slightly more conservative

than the Whisper result.

For the thermal range, using PU-SOL-THERM benchmarks, the mean multiplication

factor k̄ based on inverse variance weighting is 1.0034 and therefore the bias β is set to zero

as it is for the Pu metals; for comparison, the bias as defined by the Whisper methodology

is -0.0036. The weighted standard deviation in k about the mean sk is 0.0032 and the

average standard deviation in k σ̄k is 0.0030. The pooled standard deviation, and hence

the bias uncertainty, σβ is 0.0044, and the single-sided tolerance factor κ is 2.75. This leads

to a calculational margin from the standard parametric approach of 0.0120. The Whisper

methodology predicts the lowest calculational margin at optimal moderation as 0.0125, which

is slightly higher as the standard, parametric approach. Including all the MIX-SOL-THERM

benchmarks (after rejection), many of which are driven by fission of 239Pu, in the analysis

using the standard parametric approach increases the calculational margin slightly to 0.0126.
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V.B Low-Enriched Uranium Lattice

The second application represents the storage of fresh reactor fuel assemblies immersed in

pure light water (density of 1.0 g/cm3). The hypothetical fuel assembly is a 17 × 17 fuel

pin array in a square-pitch lattice in an infinite array. The elements in the fuel assembly are

zircaloy-IV clad UO2 fuel (mass density 10.97 g/cm3 with varied enrichments), zircaloy-IV

clad UO2 with 6 weight percent Gd2O3, and Al-clad water tubes. All pins and tubes have

a height of 500 cm and are reflected by 100 cm of water on top and bottom. Figure 8 gives

the layout of the lattice. The fuel pin radius is 0.63245 cm, and the inner and outer cladding

radii are 0.64895 and 0.69090 cm respectively (the cladding for both types of fuel and the

water tubes have the same dimensions). The assembly is surrounded by a 0.5-cm buffer layer

of water on the sides, and there is a 0.1-cm thick boral (with 10% boron by weight) sheath

between the assemblies to absorb neutrons; the sheath does not extend into the axial water

reflectors. The assembly has reflecting boundaries on the sides (not on the top and bottom)

to simulate the effect of these assemblies in a very large array that would be found in a fuel

storage pool. For simplicity, grid spacers are not included in the model.

Two parameters are varied as part of the study: the uranium enrichment and the pitch-

to-diameter ratio (P/D). The enrichment varies from 1% to 4% in 0.2% increments; isotopes

other than 235U and 238U are neglected for simplicity. The P/D varies from 1.0 to 2.0 in

increments of 0.05.

Figure 9 gives the calculated k for the configurations with the two parameters varied.

The behavior is expected: k increases monotonically with enrichment and has a maximum

value at some P/D corresponding to optimal moderation, which varies with enrichment.

Contour lines are also included for different values of k. The USL, i.e., the value that can

be asserted to be subcritical, lies somewhere below the k = 1 contour line.

To determine the contour for the USL, first the calculational margin is estimated (as

discussed in Sec. III.A.1). Figure 10 displays the calculational margin for this parametric

study. The calculational margin varies from about 0.014 to 0.017 and decreases as P/D
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increases (for this range of enrichments). The calculational margin increases sharply to over

0.03 for very low enrichment (< 2%) and P/D (< 1.2). This is because there are no critical

experiments in that regime, as it is not possible to make any quantity of a few percent

enriched uranium critical without significant moderation and therefore this situation is not

a concern for criticality safety.

The next contribution to the USL is from the MOS because of variability in k from

nuclear data uncertainties, i.e., MOSdata from Eq. (37). These, at the 99% confidence level

[Eq. (43)], are shown in Fig. 11. As before, MOSdata increases with decreasing P/D, varying

from about 0.0016 to 0.0030, and then increases sharply for very low enrichment and P/D,

where, again, it is not of practical concern. The nuclear data adjustment is less effective at

reducing the uncertainties for the LEU lattice application compared to the the 239Pu mass

study in Sec. V.A; the uncertainties in k from nuclear data are reduced by factors of 5-7,

compared with the factors of 15-30 for the thermal Pu metal-water mixtures.

Adding an additional margin of MOSsoftware = 0.005 everywhere to account for errors in

transport software (Sec. III.B.1) allows for the calculation of the USL [Eq. (2)] as a function

of the parameter space, which is shown in Fig. 12. As expected from the calculational margin

and MOS (Figs. 10 and 11), the USL decreases with decreasing uranium enrichment. For

the region of practical concern to criticality safety, the USL ranges from about 0.97 to 0.98.

The contour line identifying the region where criticality can be ensured is given in the

plot of δA [Eq, (3)], the degree to which the calculated k exceeds the USL, in Fig. 13.

For P/D < 1.1, all uranium enrichments < 4% can be taken to be subcritical. At about

P/D = 1.55, the contour reaches its minimum value where the uranium enrichment must be

< 2.7% to be considered subcritical.

While it is of no concern to criticality safety for this particular application, the behavior

of the calculational margin seen in the bottom-left corner of Fig. 10 is worth analyzing.

These cases are of an intermediate spectrum, having some amount of moderation, but not

enough to thermalize the neutrons so that the dominant amount of fission arises from thermal
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neutrons. The maximum ck [Eq. (32)] for the case with the (lowest) enrichment of 1% and

P/D = 1 is 0.828; the benchmark is actually a fast-spectrum, uranium-metal experiment,

IEU-MET-FAST-007.6 Such a value of ck is marginal in terms of its neutronic similarity

(0.9 or greater is preferred). Accordingly, the total sample weight required increases to

compensate for the lack of a similar benchmark experiment.

The reason the calculational margin spikes near the corner is because there is not a

sufficient sample weight, and therefore the non-coverage penalty (Sec. III.A.3) is required.

For six different cases in the low-enrichment and -P/D regime, Fig. 14 shows the cumulative

fraction of the required weight as a function of benchmark ck (the benchmarks are sorted by

ck and added to the validation by increasing ck). The value for ck = 1 represents the fraction

of the required weight that is available for the sample size in the validation. Ideally, this

value would reach unity, indicating that the benchmark suite is sufficient for this particular

application. In these cases, however, it is not, and a non-coverage penalty is applied as an

additional margin of safety.

Again, the reason this effect arises in this LEU lattice study is that it is impossible to

achieve criticality with this low an enrichment and moderation and, therefore, there are no

critical experiments possible of this kind. In this case, k is low enough that it would not

exceed the reduced USL. As a reminder, criticality safety evaluations do not and should not

rely on computational methods alone. Even in cases where the k in an analogous physical

regime could hypothetically exceed the lower USL of a calculation, it would behoove the

criticality safety analyst to consider the physical possibility of achieving criticality, which is

independent of calculational or administrative margins. In other words, for systems where

achieving criticality has been shown experimentally to be impossible (even if k can reach a

value close to unity and may technically exceed a derived USL), the analyst should rely on

that fact and not calculations to set appropriate limits.

6The IEU-MET-FAST-007 benchmark is Big Ten, which was an experiment consisting of a large, uranium
metal cylindrical core containing disks of varied 235U enrichments with 10% average enrichment surrounded
by a depleted uranium reflector. The experiments were performed at Los Alamos National Laboratory with
first criticality achieved in 1971.
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A comparison is performed with the standard approaches in Sec. II.A using all LEU-

COMP-THERM benchmarks in the post-rejection validation suite. The benchmarks do not

pass the Shapiro-Wilk normality test, and therefore the non-parametric, rank-order method

(Sec. II.A.2) is required. The minimum k̃ is 0.98838 with a 1σ uncertainty (benchmark

and statistical) of 0.00410. The benchmark with the minimum k̃ is case 1 of the LEU-

COMP-THERM-025 benchmark,7 which has a benchmark k of 1.0000 and therefore the

corresponding minimum k is the same as k̃, 0.98838. The non-parametric confidence CNP

from Eq. (17) with p = 0.95 is about 0.9999 and the corresponding non-parametric margin

mNP from Table I is 0.0, so no additional margin beyond that given by Eq. (15) needs to be

applied. Using nσ = 2.6 (the 99% confidence level), the calculational margin computed with

Eq. (15) is 0.0223, which is significantly more conservative than the Whisper calculational

margins that range from 0.014 to 0.017.

The reason for this difference is that a single benchmark, case 1 of LEU-COMP-THERM-

025, is determining the calculational margin by itself. There is no consideration given to

weighting by relevance to the application being studied, as all LEU-COMP-THERM bench-

marks are treated equally in the standard non-parametric, rank-order method. Whisper

never actually uses the LEU-COMP-THERM-025-001 in the validation (i.e., its weight is

zero) because its ck is too low (ck,acc of Sec. III.A.2 ranges from 0.4 to 0.6 for H/D ≥ 1.1) to

be considered relevant when considering the availability of other more relevant LEU-COMP-

THERM and LEU-SOL-THERM benchmarks in the suite. This demonstrates an advantage

of the Whisper methodology, which weights benchmarks based upon their relevance to the

particular application being analyzed.

A comparison is also performed with the parametric approach in Sec. II.A.1 that would

have been used had the benchmarks been normally distributed. The average scaled k, k̄,

based on inverse variance weighting [Eq. (5)] is 0.9989. The bias β [Eq. (6)] from the

7The LEU-COMP-THERM-025 benchmark is a series of experiments that are water-moderated hexagonal
pitch lattices of 7.5% enriched UO2 rods with stainless steel cladding. These experiments were performed in
1965 at the Kurchatov Institute in Russia.
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standard approach is -0.0011; for comparison, the bias computed from the Whisper method-

ology [Eq. (25)] for a typical case near the subcritical contour (enrichment of 2.8% and

P/D = 1.35) is about -0.0084. The weighted standard deviation in k about the mean sk

[Eq. (9)] is 0.0017 and the average standard deviation in k σ̄k [Eq. (10)] is 0.0018. The

pooled standard deviation σβ [Eq. (8)] is 0.0025. The resulting calculational margin from

Eq. (15) with κ = 2.70 [Eq. (11)] is then 0.0080. The Whisper methodology predicts a

range of calculational margins; its minimum is about 0.0135, which bounds the one obtained

with the standard parametric approach.

V.C Uranium-Plutonium Metal-Water Mixtures

The third application is a 4 × 3 array of cans containing metal-water mixtures of U and Pu,

representing a hypothetical analysis of solutions encountered during reprocessing of spent

nuclear fuel. The cans are SS-304 with a thickness of 0.1 cm. They have an interior diameter

and height of 15 cm and 50 cm respectively. The center-to-center distance between the cans

is 20 cm. The cans sit on a Los Alamos concrete floor that is 50 cm thick and extends for

500 cm from the center of the cans on the edge. The air between the cans is simulated as

void.

The metal concentrations of U and Pu range from 0 to 200 g/L in increments of 10 g/L,

and they are varied independently such that all mixtures within the range are considered.

The U has 3% 235U with the remainder being 238U. The Pu consists of 62% 239Pu, 22% 240Pu,

12% 241Pu, and 4% 242Pu. All percentages are by weight.

Figure 15 gives k for the uranium and plutonium concentrations. As expected, the greater

the plutonium concentration, the greater the k. Perhaps not as obvious is that increased

uranium concentration actually decreases the reactivity. The reason is that the uranium is

enriched only enriched to 3%, and therefore increasing the amount of uranium predominantly

increases the presence of 238U, which increases the total amount of resonance capture in the

solution and therefore decreases k.
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Contour lines for various values of k are given in Fig. 15 as well. Note that the calculated

critical line occurs only for plutonium concentrations > 180 g/L, and the amount of pluto-

nium needed to achieve criticality (as predicted by MCNP6.1 with ENDF/B-VII.1 nuclear

data) only increases with increased uranium concentration. As will be seen, the actual value

that can be treated as critical is significantly lower.

The calculational margin computed by Eq. (27) is displayed in Fig. 16 with contour

lines to illustrate the behavior, which is relatively flat over this entire range, its value being

from about 0.034 to 0.035. The calculational margin peaks at around 0.0353 for plutonium

concentrations of 50 to 120 g/L with uranium concentrations ranging from 0 to 90 g/L.

The MOS from the uncertainties in k from nuclear data [i.e., MOSdata from Eq. (37)

and computed by Eq. (43)], which are displayed in Fig. 17 at the 99% confidence level, are

likewise somewhat insensitive to the plutonium and uranium concentrations, ranging from

0.003 to 0.004. Of particular note is the trend that the uncertainty in k from nuclear data

increases as the uranium concentration decreases and the plutonium concentration decreases.

This is important because, as seen in the behavior in k, the USL will tend to decrease as

the calculated system k increases; however, the magnitude of the effect of uncertainties in k

from nuclear data is small relative to that of the calculational margin. The effectiveness of

the nuclear data adjustment for reducing the nuclear data uncertainties decreases with LEU

concentration. For low LEU concentrations, the reduction is about a factor of 10, and then

decreases to about a factor of 5 at the 200 g/L of LEU limit.

The resulting USL, including an additional global margin of 0.005 for undetected errors

in transport software (MOSsoftware described in Sec. III.B.1), is shown in Fig. 18 and ranges

from about 0.956 to 0.957, which is, again, a small variation over the range of parameters

considered. The δA parameter, representing the amount of k over the USL [Eq. (3)], is

displayed in Fig. 19. At 20 g/L of uranium, the maximum plutonium concentration in

an assurably subcritical configuration is about 140 g/L, which is significantly lower than

the 180 g/L that would be obtained if the calculated k (Fig. 15) were perfectly accurate.
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The allowable plutonium concentration increases monotonically and slowly with increasing

uranium concentration.

A comparison is performed with the parametric approach in Sec. II.A.1. All 21 MIX-

SOL-THERM benchmarks (prior to rejection) are used in this case, because the remaining

12 after rejection make the sample size marginal. The benchmarks pass the Shapiro-Wilk

normality test, and therefore the parametric approach is valid.

The average scaled k, k̄, based on inverse variance weighting [Eq. (5)] is 1.0018. The bias

β [Eq. (6)] from the standard approach is set to zero to not non-conservatively take credit for

positive bias. The weighted standard deviation in k about the mean sk [Eq. (9)] is 0.0082 and

the average standard deviation in k σ̄k [Eq. (10)] is 0.0019. The pooled standard deviation

σβ [Eq. (8)] is 0.0084. The resulting calculational margin from Eq. (15) with κ = 3.78 [Eq.

(11)] is then 0.0318. The Whisper methodology predicts the calculational margin at about

0.035, which bounds the one obtained with the standard parametric approach.

Both Whisper, as demonstrated here, and other GLLS-based methods for determining

the calculational margin are still able to produce meaningful results when the statistical

foundations of many of the other approaches become very questionable when the sample size

is marginal. S/U-based methods for validation are most useful in these situations.

V.D Molten Salt Reactor Lattice

The final case deliberately attempts to stress the method by applying it to a case where

there are no obviously relevant benchmark critical experiments. This case is a hypothetical

MSR with channels of 233U/232Th fuel in a molten salt within a graphite moderator. The

model is an infinite unit cell in a hexagonal lattice. The unit cell consists of a fuel channel

for the molten salt-fuel mixture with a diameter of 1.2 cm. Surrounding the fuel channel is

a graphite moderator with reflecting boundaries on the sides. The P/D is varied and ranges

from 1.00 to 2.20 in increments of 0.05. The channel height is 200 cm. Above and below is

a uniform molten salt fuel layer 20 cm tall with another 10 cm of graphite.
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The molten salt fuel mixture consists of (atom percentages) 55% LiF, 24% BeF2, 20%

ZrF4, and 1% Th/UF4. The lithium is enriched to 99.95% 7Li with the remainder being 6Li.

The uranium is 99% 233U and 1% 232U. In this parametric study, the fraction of uranium

(the remainder being thorium) ranges from 5% to 8% and is varied in in increments of 0.2%.

Figure 20 shows k as a function of uranium fraction and P/D. Since the physics is very

similar to the LEU lattice of Sec. V.B, the trend in k with respect to the two analogous

parameters is quite similar. Because the materials in the MSR lattice are quite different and

more exotic (at least with respect to current typical reactor designs) than the LEU lattice,

there are few benchmark critical experiments available, and therefore the USL is significantly

lower.

The calculational margin [computed using Eqs. (27) and (36)] is displayed in Fig. 21

and is relatively insensitive to the variation of the uranium concentration and lattice P/D;

the value is around 0.0475. Note that this is significantly larger than the calculational mar-

gins seen in the previous three example studies and is near the bounding, unweighted value

of 0.049 [from Eq. (27) without using Eq. (36)]. The maximum ck [Eq. (32)] for this

case ranges from 0.24 to 0.29, indicating very poor coverage in the benchmark suite — the

ICSBEP Handbook does not provide any experiments that appear relevant to this applica-

tion and neither does the International Handbook of Evaluated Reactor Physics Benchmark

Experiments [40]. The most relevant benchmarks are, unsurprisingly, the 233U compound

(lattice) and solution systems.

The calculational margin is driven by the comparatively large bias of these systems. It

turns out that the non-coverage penalty (Sec. III.A.3) does not play a significant role for

this application even though the amount of sample weight available for the validation is

only 60 to 80% of the required sample weight. This is because the calculational margin

m̃, the calculational margin that is calculated assuming the sample weight is sufficient, is

already near m0, the value used as the bounding calculational margin. In other words,

the most negatively biased results in the benchmark set provided by Whisper are the 233U
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cases, which are the ones being used in Whisper’s attempt to establish a baseline USL. The

resulting non-coverage penalty is about 0.001 or less.

Had the case of having no relevant benchmark occurred for an application driven by 235U

or Pu, the non-coverage penalty would have likely been significantly higher. This is because

the benchmarks in the set featuring those fissionable isotopes have a much less negative bias

associated with them, and the interpolation to m0 would have resulted in a larger increase

in the calculational margin.

Figure 22 shows the MOS for the uncertainties in k from nuclear data [i.e., MOSdata from

Eq. (37) and computed by Eq. (43)] at the 99% confidence level. The nuclear data uncer-

tainty MOSdata ranges from just above 0.013 to just below 0.019, which is also significantly

higher than what is observed in the hypothetical studies in Secs. V.A, V.B, and V.C. The

reason these are so much higher is the relative scarcity of 233U benchmarks; the nuclear data

adjustment cannot reduce the nuclear data uncertainties to nearly the degree that it can

for the plutonium and uranium systems. The uncertainty in k from nuclear data tends to

decrease as uranium concentration and P/D increases, which is a conservative effect, i.e.,

the margin decreases as k would tend to increase. Because of the lack of benchmarks, the

nuclear data adjustment is quite ineffective at reducing the nuclear data uncertainties; the

uncertainties in k are reduced by only 10-15%, compared to factors of 5-30 for the other

studies.

After the application of a global margin of 0.005 for transport software (MOSsoftware of

Sec. III.B.1), the resulting USL is obtained using Eq. (2); this is presented in Fig. 23. Based

on the variation of the nuclear data uncertainty MOSdata, the similar trend is observed that

the USL increases (conservatively) with increasing uranium concentration and P/D. The

USL ranges from 0.930 to 0.935 for much of the studied parameter space. This value is much

lower than seen in the studies in Secs. V.A, V.B, and V.C, but this reflects both the lack of

neutronically similar benchmark critical experiments and the large biases in the (marginally

appropriate) ones that do exist.
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A plot of δA [Eq. (3)] and the corresponding subcriticality contour is shown in Fig. 24.

The contour follows the similar shape of the curves for k in Fig. 20 but is significantly lower

than the k = 1 curve.

Since there are no clearly applicable benchmarks available, no comparison is made with

the standard approaches discussed in Sec. II.A. However, the USL results for a system

with no benchmarks are on the same order as analyses of other systems using the sen-

sitvity/uncertainty methods in SCALE. For example, a validation study for mixed-oxide

fuel reported USL values of 0.928 and 0.936 depending on the trending parameters used [41].

Similar analyses of the a 233U storage array resulted in USL values on the order of 0.955 [42].

Whether to accept the region of subcriticality identified by Whisper can be debated.

The Whisper method did the best it could with the data that was provided (or really lack

thereof in terms of its relevance to the application), and produced a quite conservative USL.

In such a case as this, the criticality safety analysts should certainly give due consideration

to whether this USL is conservative enough and if additional margin is appropriate, more

reactive materials may be substituted that are better known (e.g., 239Pu in place of 233U),

other non-computational techniques should be used to bound the system k, and/or additional

measurements are needed to ensure subcriticality.

V.E Summary & Discussion of Results

Table III gives a few of the results obtained from Whisper. A few sets of parameters are

taken for each hypothetical application case; the parameters chosen lead to configurations

near where subcriticality can be assured (i.e., the δA = 0 contour). Note that the MOS

values in Table III contain both the margin for software errors (MOSsoftware of Sec. III.B.1)

and nuclear data uncertainties (MOSdata of Sec. III.B.2) at the 99% confidence level and the

USL given is a baseline value before any additional margin about the application is applied,

as appropriate, by the analyst.

Table IV compares the calculational margins obtained by the standard approaches dis-
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cussed in Sec. II.A (both the parametric and the non-parametric techniques for all cases

regardless of whether or not they passed the Shapiro-Wilk normality test) and Whisper. The

calculational margins shown in Table IV correspond to the largest calculational margin from

the respective cases in Table III.

Whisper typically obtains similar or more conservative calculational margins than the

standard parametric approach and less stringent calculational margins than the rank-order

approach.

The reason that Whisper calculational margins are typically more conservative than the

standard parametric approach is because an extreme value distribution is used. The excep-

tion in Table IV is the plutonium-oxide cases where Whisper estimates a significantly lower

value than the standard parametric approach. This is because the S/U techniques employed

by Whisper are able to identify plutonium metal or solution benchmarks that are neutroni-

cally similar, albeit having a different fissionable material form, for the validation, whereas

the analysis done with the standard parametric approach, lacking insight into neutronic

similarity of benchmarks with other fissionable material forms, used only the very limited

set of plutonium-oxide benchmarks leading to a very large single-sided tolerance factor κ;

also, the weighting based on similarity in Whisper tended to discount the few benchmarks

leading to a higher bias uncertainty, which is information that is unavailable to the standard

parametric approach.

Whisper calculational margins tend to be less stringent than the non-parametric, rank-

order approach because Whisper uses neutronic similarity weighting in its extreme value

calculation, whereas the rank-order approach simply uses the worst case, i.e., lowest nor-

malized k, from the set of benchmarks chosen by the analyst, which, lacking similarity

information, may or may not be the most applicable to the current application model being

analyzed.

As seen in Table III, the MOS values obtained by Whisper tend to be significantly lower

than those typically used in NCS analysis, which are usually 0.02 or higher. Recall the MOS
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accounts for all aspects of the process and simulation and should be large enough that the

analyst can ensure subcriticality. The MOS values derived from Whisper only account for

two aspects of this, undetected errors in software and expected uncertainty/variability from

nuclear data libraries. Because these factors are now explicitly quantified, the NCS analyst

may use this information to determine what, if any, extra margin is appropriate to ensure

subcriticality for the process being analyzed.

VI SUMMARY & FUTURE WORK

This paper introduced Whisper, a method and software package for calculating baseline USLs

for criticality safety analysis that can be integrated into the workflow of using continuous-

energy Monte Carlo software such as MCNP. The Whisper methodology uses S/U techniques

to assist with the selection and weighting of benchmark critical experiments relevant to an

application. Once these weights are known, the calculational margin is computed with an

extreme value distribution. A baseline MOS is determined from the combination of a term

for undetected errors in software and nuclear data processing software (set at 0.005 in this

paper) and the uncertainty in k from nuclear data following a GLLS data adjustment.

A benchmark suite, starting with 1,086 benchmark critical experiments and actually using

972 benchmarks after a rejection of outliers identified by a GLLS nuclear data adjustment

with an iterative-diagonal χ2 rejection technique, was discussed and used in the generation of

results. Four hypothetical criticality safety case studies were analyzed: the minimum critical

mass of 239Pu, an infinite array of LEU lattice fuel assemblies, a series of mixed uranium-

plutonium metal-water mixtures, and an infinite MSR lattice with 233U/232Th fuel. For these

studies, Whisper generated results that were used to produce curves identifying regions in

the parameter space that can be assured to be subcritical. Comparisons with a traditional

parametric approach for validation show that Whisper obtains similar or more conservative

calculational margins, and comparisons with a non-parametric, rank-order approach show

that Whisper obtains less stringent ones.
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In the near term, a study should be performed comparing the calculational margins

generated by Whisper and the GLLS methods that are implemented in other software such

as SCALE. The two methods are both S/U based, but use different approaches to generate

the calculational margin, and assessing the similarity or difference between the two results

would be insightful.

Going forward, the largest theoretical improvements to Whisper that are needed are

further study of similarity coefficients, weighting by benchmark uncertainties, handling of

small sample sizes, accounting for correlations of benchmark critical experiments, and a

generalization that would allow the incorporation of other responses.

Whisper currently used ck, the correlation coefficient as a measure of similarity. This

choice restricts the measured values to be normally distributed. Alternatives, such as a

coefficient derived from the mutual information [25], that allow for non-normally distributed

quantities would be advantageous in these cases. In either case, other measures of similarity

and methods for generating weighting factors should be investigated.

One drawback of Whisper is that the extreme value distribution tends to bias toward

benchmark critical experiments with very large uncertainties. For the analyses performed

in Sec. V and in Ref. [15], the benchmark critical experiments were used without any

weighting based upon the magnitude of the benchmark uncertainties, and, consequently, a

few benchmarks with abnormally large uncertainties may determine the USL. In practice,

the ICSBEP process filters out those experiments with too high of an uncertainty to be

useful for criticality safety validation. This approach is rather unsatisfying as sometimes it

would be useful or even necessary to add experiments with larger uncertainties than would

normally qualify for the ICSBEP Handbook, and a more rigorous approach for discounting

benchmarks with abnormally large benchmark uncertainties needs to be investigated.

Whisper currently handles the lack of critical experiment data with an ad hoc interpola-

tion to an unweighted calculational margin for a very large and comprehensive benchmark

suite. In these cases, it is especially incumbent upon the criticality safety analyst to treat
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the results from Whisper with caution, as they may be misleading. While it is unlikely that

this problem can be solved for all cases—in the end, the lack of data must be handled based

upon experience and engineering judgment—some further research in the handling of small

sample sizes and exactly what constitutes such is needed.

The Whisper methodology only partially accounts for experimental correlations in the

benchmark critical experiments; these are taken into account in the nuclear data adjustment,

but they are neglected in the computation of the calculational margin. Testing during the

development of this method, which is not presented in this paper, showed that the assump-

tion of independence typically leads to more conservative calculational margins. The effect

on the calculations of MOSdata and the benchmark rejection, which did account for them

where available, showed the impact to be minor on the overall results of the cases presented

in this paper. Other work using different approaches, however, has shown that experimental

correlations can have a significant impact on the bias and bias uncertainty [43, 44], and

therefore directly change the calculational margin. Since few benchmark critical experiment

correlations have currently been quantified, the impact of neglecting benchmark correlations

in determining the calculational margin are currently restricted to a small portion of prac-

tical AOAs; however, more correlation information is gradually becoming available, and the

Whisper methodology should be adjusted to account for them consistently. Additionally, it

may be possible to extend Whisper to account for the additional correlations of benchmark

uncertainties that arise as a result of estimating unknown benchmark uncertainties (see Sec.

III.C).

Currently, the Whisper methodology is restricted to using critical benchmark experiment

values of the effective multiplication k. While this is of primary interest to criticality safety,

other measured quantities in benchmark experiments may be useful as well. Recently, tech-

niques have been developed that allow continuous-energy Monte Carlo calculations of sen-

sitivity coefficients of more general responses [45]. Furthermore, the possibility of adapting

and applying a quantity called the coverage ratio [46] to connect other measured responses
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such as k should also be investigated in the context of Whisper and similar methods.
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Table I: Non-Parametric Margins for Rank-Order Method (p = 0.95)

CNP mNP

CNP > 0.9 0.00
0.8 < CNP ≤ 0.9 0.01
0.7 < CNP ≤ 0.8 0.02
0.6 < CNP ≤ 0.7 0.03
0.5 < CNP ≤ 0.6 0.04
0.4 < CNP ≤ 0.5 0.05

CNP ≤ 0.4 Additional data needed.
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Table II: Benchmark Suite Summary

ICSBEP Identifier # Included # After Rejection
HEU-MET-FAST 251 222
HEU-MET-INTER 4 2
HEU-MET-THERM 4 2
HEU-MET-MIXED 8 8
HEU-COMP-INTER 1 1
HEU-COMP-THERM 25 17
HEU-SOL-THERM 93 91
IEU-MET-FAST 12 12
IEU-COMP-THERM 1 1
LEU-COMP-THERM 182 178
LEU-SOL-THERM 27 25
MIX-MET-FAST 33 32
MIX-MET-MIXED 1 1
MIX-COMP-FAST 2 2
MIX-COMP-INTER 1 1
MIX-COMP-THERM 15 15
MIX-SOL-THERM 21 12
PU-MET-FAST 53 49
PU-COMP-FAST 1 1
PU-COMP-INTER 1 1
PU-COMP-MIXED 34 17
PU-SOL-THERM 158 142
U233-MET-FAST 10 8
U233-COMP-THERM 9 9
U233-SOL-INTER 33 24
U233-SOL-THERM 106 94
Total 1086 972
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Table III: Summary of Whisper Results

Case CM MOS USL
Pu Mass (H/X = 0) 0.0128 0.0070 0.980
Pu Mass (H/X = 4) 0.0310 0.0092 0.959
Pu Mass (H/X = 700) 0.0125 0.0066 0.981
LEU Lattice (Enirch = 2.8%, P/D = 1.35) 0.0162 0.0072 0.976
LEU Lattice (Enirch = 2.8%, P/D = 1.80) 0.0137 0.0066 0.976
U/Pu Mix (U = 20 g/L, Pu = 140 g/L) 0.0351 0.0090 0.956
U/Pu Mix (U = 200 g/L, Pu = 180 g/L) 0.0340 0.0089 0.957
MSR Lattice (233U = 6.4%, P/D = 1.20) 0.0475 0.0206 0.932
MSR Lattice (233U = 6.0%, P/D = 1.80) 0.0471 0.0203 0.932
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Table IV: Comparison of Calculational Margins Using Standard Approaches and Whisper

Case Benchmark Set # Normal? Parametric Rank-Order Whisper
Pu Mass (Fast) PU-MET-FAST 50 yes 0.0109 0.0281 0.0128
Pu Mass (Inter) PU-COMP-MIXED 19 no 0.0455 0.0773 0.0310
Pu Mass (Thermal) PU-SOL-THERM 154 yes 0.0120 0.0228 0.0125
LEU Lattice LEU-SOL-THERM 178 no 0.0080 0.0223 0.0162
U/Pu Mix MIX-SOL-THERM 21 yes 0.0318 0.0454 0.0351
MSR Lattice None Available 0 — — — 0.0475
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Figure 1: Probability density for the maximum of two normal distributions with different
means and variances.
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Figure 2: Variation of k as a function of 239Pu mass and H/X for the 239Pu critical mass
study.
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Figure 3: Calculational margin as a function of 239Pu mass and H/X for the 239Pu critical
mass study
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Figure 4: Margin of subcriticality for nuclear data uncertainties (99% confidence level) as a
function of 239Pu mass and H/X for the 239Pu critical mass study.
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Figure 5: Upper subcritical limit as a function of 239Pu mass and H/X for the 239Pu critical
mass study.
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Figure 6: Variation of δA, the amount k exceeds the USL, as a function of 239Pu mass and
H/X for the 239Pu critical mass study.
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Figure 8: Pin layout for the LEU lattice. F represents a fuel pin, G represents a fuel pin
with Gd2O3, and an empty space is a water/instrument tube.
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Figure 9: Variation of k as a function of uranium enrichment and P/D for the LEU lattice
test case.
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Figure 10: Calculational margin as a function of uranium enrichment and P/D for the LEU
lattice test case.
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Figure 11: Margin of subcriticality for nuclear data uncertainties (99% confidence level) as
a function of uranium enrichment and P/D for the LEU lattice test case.
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Figure 12: Upper subcritical limit as a function of uranium enrichment and P/D for the
LEU lattice test case.
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Figure 13: Variation of δA, the amount k exceeds the USL, as a function of uranium enrich-
ment and P/D for the LEU lattice test case.
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Figure 15: Variation of k as a function of uranium and plutonium concentrations in g/L for
the mixed uranium-plutonium metal-water mixture test case.
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Figure 16: Calculational margin as a function of uranium and plutonium concentrations in
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Figure 17: Margin of subcriticality for nuclear data uncertainties (99% confidence level) as a
function of uranium and plutonium concentrations in g/L for the mixed uranium-plutonium
metal-water mixture test case.
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Figure 18: Upper subcritical limit as a function of uranium and plutonium concentrations
in g/L for the mixed uranium-plutonium metal-water mixture test case.
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Figure 19: Variation of δA, the amount k exceeds the USL, as a function of uranium and
plutonium concentrations in g/L for the mixed uranium-plutonium metal-water mixture test
case.
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Figure 20: Variation of k as a function of uranium fraction and P/D for the MSR lattice
test case.
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Figure 21: Calculational margin as a function of uranium fraction and P/D for the MSR
lattice test case.

96



 1  1.2  1.4  1.6  1.8  2  2.2

Channel Pitch to Diameter Ratio

 5

 5.5

 6

 6.5

 7

 7.5

 8
U

ra
ni

um
 to

 F
is

si
on

ab
le

 M
at

er
ia

l R
at

io
 (

%
)

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

0.014

0.015

0.016
0.017

Figure 22: Margin of subcriticality for nuclear data uncertainties (99% confidence level) as
a function of uranium fraction and P/D for the MSR lattice test case.
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Figure 23: Upper subcritical limit as a function of uranium fraction and P/D for the MSR
lattice test case.
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Figure 24: Variation of δA, the amount k exceeds the USL, as a function of uranium fraction
and P/D for the MSR lattice test case.
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